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1. INTRODUCTION

Gradient models are analytic representations of the spatial distributions of density,
pressure, temperature, and velocity of expanding propellant gases between the gun breech
and the projectile base. In a thermodynamic interior ballistic model, only mass and energy

‘conservation are explicitly required, and, therefore, a gradient model must be provided to -

account for the spatial variation in gas momentum. Closure is achieved by including a
constitutive law for the gas and requiring that, at any point in time during the interior ballistic
process, an integral average of the local thermodynamic properties of the gas equal the
corresponding average gas properties derived from the constitutive law and energy

conservation for the system as a whole.

In general, use of a gradient mbdel results in fixed gradients of system proparties
throughout the interior ballistic process and, thus, a fixed ratio of projectile base pressure to
breech pressure (Corner 1950; Vinti and Kravitz 1949). Exceptions arise if boundary
conditions and ratio of propellant charge mass to projectile mass (i.e., charge to mass ratio
[C/M)), vary during the interior ballistic process, as in the Modified Lagrange gradient model of
Morrison and Coffee (1990), or if multiphase effects are included, as in the RCA gradient
mode! of Robbins, Anderson, and Gough (1920). The fixed {or constant) gradient character of
basic gradient models is a result of the exclusion of wave phenomena, such that changes in
the physical state of the system are instantaneously communicated throughout the gas in
accordance with the distribution functions of gas properties for a particular gradient model.

Thus, gradient models entail an implicit assumption of infinite gas sound speed.

The development of gradient models has been closely tied to the ballistics of conventional
guns, and such models do not appear to have been widely applied to novel propulsion
concepts such as the light gas gun (Seigel 1979). However, in the derivation of traditional
gradient models, i.e., the Lagrange (Corner 1950) and the Pidduck-Kent (Vinti and Kravitz
184G) models, there are no assumptions which limit their application to conventional guns or
to gas properties characteristic of conventional gun propellants. Therefore, traditional gradient
models should be applicable in thermodynamic interior ballistic models of gas dynamic
propulsion processes irrespective of molecular weight or sound speed of the driving gas,
subject to the usual consideration of expansion ratio and, in the case of the Lagrange




A 1950; Vinti and Kravitz 1949). Indeed, the accuracy of a gradient
configuration should improve with increasing sound speed since wave

gradient, C/M (C
model for a givel
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olumn is reduced. As a result, the relaxation of wave processes which

dominate early ex;%; :;:’:ﬂ,» ' and the subsequent establishment of a nearly constant base-to-

breech pressure rat 3ld occur more quickly, thus, at a lower expansion ratio for a low

k 3 - .
molecular weight ga; -lising the range of validity and the accuracy of the gradient model.

Thus, the pressure « L \oproximation and the accuracy of ballistic solutions obtained

%_:.
using traditional grac

.;s*fols should actually improve as molecular weight is decreased

and sound speed inc¥y¥e:

it has been experimentally : onstrated that the rate of conversion of liquid to gas, as well as

the pressure, density, and ¢

4

achieving ballistic control and ri# yeatability with inert working fluids, the data does not

constitute a clear demonstratiof:'® ballistic control. In the case of energetic working fluids, or

propellants, the evidence of a ¢

correspondence between the rate of conversion of

propellant to gas and the charac"’ stics of the plasma source is less conclusive, particularly

for cases in which *he ratio of propellant chemical energy to plasma energy is greater than
about 2 to 4. Although experimental data is somewhat limited, it would appear that
reasonable ballistic repeatability may be achievable for ratios of propellant chemical energy to
plasma energy at least on the order of one.

If, however, it is assumed that for some combinations of plasma source and working fuid
(or propellant), gas generation can be precisely controlled by the plasma scurce such that
variations in the rate of plasma deposition will result in corresponding variations in chemical
energy release, then repeatable control of the ballistic process may also be assumed. If it is
further assumed that such permissible combinations of plasma source and working fluid are -
possible for a sufficiently wide range of working fiuid characteristics, it may then be possible to
identify unconventional propellants, which upon reaction generate low (average) molecuiar
weight gaseous products. In comparison with the combustion products of conventional solid
propeliants, a low molecular weight gas contains a greater number of molecules per unit



mass, the ratio of the number of moles per unit mass being inversely proportional to the ratio
of mclecular weights of the two gases. As a result, for a given gas temperature, the low
molecular weight gas will have higher specific internal energy and impetus, as well as higher
speed of sound, such that a lower mass of propelling gas is required to achieve a given initial
gas internal energy. Therefore, for fixed initial gas internal energy, the kinetic energy of a low
molecular weight propelling gas, at any given projectile velocity, represents a smaller fraction
of the total chemical energy of the system, resulting in a reduced projsctile base to breech
pressure ratio {(after relaxation of wave processes) and increased thermodynamic erficiency of
the expansion process (i.e., higher ballistic efficiency than is achievable with conventional

propellants).

In recent discussions of the electrothermal-chemical gun concept, it has been suggested
that the reduced pressure gradient in a gun using a low molecular weight gas is a result of the
higher sound speed of the gas, which permits more rapid transit of pressure waves between
the breech and the projectile base. Furthermore, it has been suggested that traditional
gradient models, which exclude wave phenomena, should not, therefore, be used in interior
ballistic simulations of the electrothermal gun. As noted earlier, the derivations of such
gradient models do not introduce limitations on the properties of propelling gases. Thus, it
would appear that their application should not be limited to the conventional gun case.

The objective of this investigation is to computationally explore the range of applicability of
the standard gradient models, Lagrange and Pidduck-Kent, in the simulation of interior ballistic
processes involving gases of varying molecular weight. To simplify the analysis, the Lagrange
ballistic problem is used as the framework for simulations. The lumped parameter IBHVG2
computer mode! (Anderson and Fickie 1987) was used to perform interior ballistic simulations
with the Lagrange and Pidduck-Kent gradient modeis. The one-dimensional XNOVAKTC
computer model (Gough 1990) was used to provide wave dynamic solutions as a baseline for
comparisons. The results indicate that traditional gradient models are indeed applicable in

interior ballistic simulations of gun concepts utilizing low molecular weight gases.

2. LAGRANGE BALLISTIC PROBLEM

The Lagrange problem is an idealization of the interior ballistic process in a gun. Itis
assumed that the gun is a right circular cylinder (i.e., chamber and bore diameter are equal)
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closed at one end by the breech. It is also assumed that prior to the start of projectile motion,
the propellant is instantaneously burned, such that the chamber is initially filled with a gas of
uniform pressure, density, and temperature. The gas is assumed to be inviscid and heat loss

to the walls is neglected.

Corner (1950) has provided a historical summary of efforts to solve the Lagrange problem,
including the development of the Lagrange and Pidduck-Kent gradient models. These models
are addressed in greater detail in subsequent sections and in Appendices A and B. The first
wave dynamic solution of the Lagrange problem was presented by Love and Pidduck (1922).
They analyzed the Lagrange prcblem using the method of characteristics, tracing the
rarefaction wave generated by acceleration of the projectile, as it moves through the gas
column between the projectile base and the breech. More recently, the Lagrange problem
and the solution of Love and Pidduck {1922) have been used as a test case for
muitidimensional interior ballistic models (Schmitt and Mann 1981; Edelman, private

communication).

The pressure distributions behind the projectile at various times during the ballistic
process, as obtained by Love and Pidduck (1922}, are shown in Figure 1. The initial chamber
pressure is 6,333.3 kg/cm? or 621.09 MPa. As the projectile begins to accelerate, a
rarefaction wave is generated at the projectile base and begins to move toward the breech.
The pressure gradient between the projectile base and the wave front prior to the first wave
reflection from the breech, and, thus, the gas kinetic energy distribution, are characteristic of a
simple wave. The wave reflects from the breech as a rarefaction, producing a nearly fiat
pressure distribution and a base-to-breech pressure ratio near 1.0 when the wave reaches the
projectile base. This reduced pressure gradient results in reduced gas acceleration and, thus,
a reduced rate of increase of gas kinetic energy.' Upon reflection of the rarefaction wave from
the projectile base, the process repeats; however, the pressure gradient is substantially
reduced. By the second reflection from the projectile base, the wave disturbance has relaxed
signiticantly, and, as can be seen in Figure 2, the ratio of base-to-breech pressure is

approaching a constant value of approximately 0.9.
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3. LAGRANGE GRADIENT MODEL

The Lagrange gradient model is the instantaneous solution of the continuity and
momentum equations for a guseous propelling charge in the Lagrange gun, with the
assumption that the gas density is uniform between the breech and the projectile base (see
Appendix A). This leads to a gas velocity distribution which varies linearly with position along
the tube, from zero at the breech to the projectile velecity at the base of the projectile. The
resulting pressure distribution is a quadratic function of distance from the breech. As noted by
Comer (1950), the term "Lagrange approximation® is applied to both the assumption of zero
gas density gradient and the assumption of a linear gas velocity distribution. It can be shown
that a zero gas density gradient implies a linear gas velocity distritution, but the reverse is not
necessarily true. While the Lagrange model is an approximate solution to the Lagrange
ballistic problem, it must be noted that this model has been routinely applied in the simulation
of “real® guns in which the propellant combusts at a finite rate during the ballistic process. In
this case, it is assumed that the unbumt propellant is uniformly distributed throughout the gas,
moves at the local gas velocity, and bums at a fate dependerni on the space mean pressure.

The Lagrange gradient model is generally applicable in cases for which the charge-to-
mass ratio is "small.” However, reasonable results are obtained for C/M in excess of 2.0.
Using the velocity and pressure distributions of the Lagrange madel, relationships between
breech, space mean, and base pressures, as well as gas and projectile kinetic energies, are

obtained. Thess are

PgreecH = PBASE(1 + %] (1)
P PBASE[1 . ;.J @)
KEgas = KEPHOJ(%] (3)
whers
- 7\% (4)
6



is the ratio of propellant mass to projectile mass and Pis the space mean pressure of the gas.
The gradients of pressure and velocity in the Lagrange model are not dependent on specific
gas properties, other than C/M, and the numerical factors which arise in the mode! (1/2 and
1/3) are constants independent of syst:m parameters.

4. PIDDUCK-KENT GRADIENT MODEL

The Pidduck-Kent model is a special solution of the continuity and momentum equations
for the gaseous propelling charge in the Lagrange gun. This special solution was first
published by Love and Pidduck (1522). A more detailed presentation was latter published by
Kent (1936) and, subsequently, an extended treatment was published by Vinti and Kraviiz
(1949). The Pidduck-Kent model addresses the nonuniformity of gas density which is
neglected in the Lagrange model and which becomes increasingly important with increasing
C/M. This is accomplished by assuming that each element of the gas evolves adiabatically
from its initial state with all gas elements foilowing the same adiabatic. In the resuiting
solution, it is found that, in its initial state, the gas density, pressure, and temperature are
decreasing functions of distance along the tube from the breech to the projectile base. A
detailed derivation of the Pidduck-Kent solution is presented in Appendix B. Pressure and
energy relationships analegous t¢ Equations 1-3 are obtained in the Pidduck-Kent gradient
model. These are '

Pareecy = Paase(1 - )17+ ") (5)
P = PBASE(1 + _g_) (6)
KEGAS = KEPROJ(‘;‘J R (7)
where n is the polytropic index,
1
(y-1)




and a, and & are parameters arising in the Pidduck-Kent salution which are related by

1_ 1 |1 _2n+1) -
T 2n+3|7, € '

In the limit as e (i.e., C/M) approaches zero, & approaches 3, and &, approaches

—t
(2(n + 1))

(see Appendix B) such that Equations 5-7 reduce to the Lagrange model, Equations 1-3.

In contrast with the Lagrange model, the parameters of the Pidduck-Kent solution, &, and
9, are functions of C/M and the ratio of specific heats. Similarly, the distributions of
thermodynamic quantities are dependent on both C/M and the ratio of specific heats. The
calculation of g, and & for a specific ballistic system has been simplified by the development
of a least squares fit of computed values of 3 using a polynomial function in € and y (Grollman
and Baer 13970). (The least squares fit of 5 was completed for 1.2 < v < 1.3, however, values
of fory=14 are within 1-2% of values obtained using the tables of Vinti and Kravitz [1949],

see Appendix D). Equation 8 is then used to calculate a,,

it has been generally supposed, though never proven, that the Pidduck-Kent solution of
the Lagrange problem approaches the wave dynamic solution for sufficiently large projectile
travel. Additional discussion of this issue can be found in Appendices B and E.

5. PROBLEM DESCRIPTION

The Lagranga ballistic problem was chosen as the framework for evaluation of the range
of applicability of the Lagrange and Pidduck-Kent gradient models. This physically simple
configuration was chosen to facilitate direct comparison of lumped parameter solutions based
on these gradient medels with one-dimensional wave dynamic soluilons. Not only is the
Lagrange problem the framework for the development of these giadient models, but, by

8




assuming a preburned propellant, differences in lumped parameter and wave dynamic

solutions arising from physical models of component processes (i.e., ignition, combustion,

drag, etc.) are avoided.

In order to investigate the effects of gas molecular weight, three propeliing gas
compositions were selected. These are hydrogen gas, which has been heated by an external
source; the combustion products of & mixtu}e of 100% hydrogen peroxide and octahe with an
oxidizer-to-fue! ratio of approximately 10 to 1; and the combustion products of JA2 solid
nropellant. The thermochemical properties of these gases, calculaced using the Blake code
(Freedman 1982) are given in Table 1. The initial gas pressure was chosen to be 500 MPa in
all cases. The initial temgerature cf the hydrogen gas was chosen to be the flame
temperature of JA2, while the flame temperature of the octane-hydrogen peroxide mixture is

somewhat lower.

The constant bore diameter of the Lagrange gun was chosen to be 120 mm. The
projectile mass is 9.0 kg. Calculations were performed for the C/M of 0.5, 1.0, 3.0, and 8.0
with the gas properties presented in Table 1. This leads to different initial chamber volumes
in each case as indicated in Table 2. Shot start pressure, bore resistance, and gas pressure
ahead of the projectile were assumed to be zero and heat transfer was neglected in all

calculations.

The XNOVAKTC code (Gough 1990) was used for one-dimensional simulations of the
Lagrange gun, while the IBHVG2 code (Anderson and Fickie 1987) was used in
thermodynamic siinulations with both the Lagrange and Pidduck-Kent (Groliman and Baer
1970) gradient model options of this latter code. It is noted that the analytic solution to the
Lagrange problem, as presented in Appendices A (Lagrange Gradient) and B (Pidduck-Kent
Gradient), could have been used in place of IBHVG2. However, this latter computer model

has been extensively tested and is readily accessible.




Table 1. Propelling Gas Properties

Ociane/

Hydrogen Peroxide JA2
Initial Pressure (MPa) 500 500 500
Initial Temperature (K) 3.410 3,017 3,410
Initial Density (g/cm®) 3.1204 x 102 2.4892 x 107! 3.0465 x 10
Ratio of Specific Heats 1.4 1.2348 1.225
Covolume (cm>/g) 3.695 1.044 0.996
Molecular Weight (g/mole) 2.0 16.873 248
Impetus (J/g) 14,175.4 1,486.7 1,140
Specific Energy (J/g) 35,438.5 £.331.8 5,066.7
Gas Sound Speed (m/s) £,036 1,831 1,699
Ideal Gas Sound Speed (mv/s) 4,454 1,355 1,183

Table 2. Chamber Volumes

Chamber Volume (liters)
Octane/
c/M Mass of Gas Hydrogen Peroxide JA2
(g)
0.5 45 1442 18.08 ' 14.74
1.0 9.0 288.4 36.16 29.48
3.0 27.0 865.2 108.48 88.44
8.0 72.0 2,307.2 289.28 235.84

10




6. RESULTS AND DISCUSSION

The results of the interior ballistic simulations are presented as graphs of dimensionless
projectile velocity (T;;) vs. dimensionless projection travel (X,, see Equations E-21 and E-22)
for C/M of 0.5, 1.0, 3.0, and 8.0." The trajectories for the hydrogen propelling gas are
presented in Figures 3 and 4. At a C/M of 0.5, the Lagrange and Pidduck-Kent trajectories
coincide with the trajectory obtained from the one-dimensional simulation. At C/M of 1.0, the
one-dimensional and Pidduck-Kent trajectories are nearly indistinguishable, however, the
Lagrange trajectory has begun to diverge. At C/M of 3.0, the Lagrange trajectory has clearly
diverged from the cne-dimensional trajectory by about 5% for dimensionless projectile travels
greater than about 15, which corresponds to an expansion ratio,

of 7.19 (see Table 3). From Equation 3, we see that, for C/M = 3.0, the Lagrange model
predicts that the gas and projectile kinetic energies are equal. In contrast, the Pidduck-Kent
model (Equation 7) predicts that the gas kinetic energy is about 85% of the projectile kinetic
energy (see Table 4). This means that the Lagrange mcdel over-predicts the gas kinetic
enerqgy for large C/M, resulting in an under-prediction of 'projecti!e velocity.

The Pidduck-Kent trajectory initially diverges from the one-dimensional trajectory for
dimensionless projectile travels between 1 and 10 (C/M = 3.0); however, the two trajectories
then converge tor §p>20. This behavior is related to the wave dynamics in the gas during the
early portion of the ballistic process (i.e., low expansion ratios). The energy partition for the
one-dimensional solution, for C/M = 3.0, is presented in Figure 5 as a function of
dimensionless projectile travel. During the early travel, tha wave dynamics of the system are
reflected in the gas kinetic energy. However, the key featurs of the energy partition is the
relationship between gas and projectile kinetic energies. Up to a dimensionless travel of

*The introduction of dimansioniess variables facilitztes the comparison of results for prepelling gases of
substantially ditfarent sound speeds and molecular waights, The specific choice of dimensionless variables is
suggested by Siegel (1979) based on a characteristic solution of the preburmt propallant ideal gas gun.
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Figure 3. Projectile Trajectories for Hydrogen Gas; C/M = 0.5, 1.0, and 3.0.
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Figure 5. Energy Partition for Hydrogen Gas; C/M = 3.2.

Table 3. Relaticnship Between Expansion Ratio and Dimensionless Projectile Travel
for Hydrogen

Expansion Ratio
x, CM=05 CM=1.0 CM =30 C/M=8.0
5 13.39 7.19 3.06 1.77 )

10 25.77 13.39 5.13 2.55
15 38.16 19.58 7.19 332
20 50.54 25.77 9.26 4.10
25 62.93 31.96 11.32 4.87
30 75.32 38.16 13.39 5.64
40 100.09 50.54 17.51 7.19
50 124.86 62.93 21.64 8.74

100 248.72 124.86 42.49 16.48
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Table 4. Pidduck-Kent and Lagrar e Parameters; y=1.4

KEgas/KEproy PareecH/Pease
C/M 8 a, CAM  CBM  1-D | (1-a)™" 1+c2M 1-D |
0.5 3.1272 0.0604 | 0.1599 0.1667  0.1591 12436 125  1.2543
1.0 32315 0.1055 | 03085 03333 03137 1.4775 150  1.4848
3.0 35288 02174 | 0.8502 1.0000 0.8281 2.3581 250  2.3412
8.0 3.9482 03447 | 2.0262 20667 2.0705 4.3895 500  4.3156 |

Note: Pidduck-Kent parameters, 8 and a,, are obtained from I1811VG2 calculations based on Grollman and Baer
(1970) least-squares fi.

about 10, the gas and projectile kinetic energies are approximaie!y equal. Above 10, they
diverge and approach a nearly constant ratio of gas to projectile kinetic energy of
approximately 0.83, which is reflected in the projectile trajectory (see Figure 3). Similar results
are observed for the C/M = 8.0 case in Figures 4 and 6. However, the gas kinetic energy is
greater than the projectile kinetic energy in this case and, due to the substantiaily increased
initial chamber length, a dimensionless travel of 30 is not quite in the asymptotic (isentropic)
region of the projectile trajectory. However, from Figure 6, it can be seen that the ratio of gas
to projectile kinetic energy approaches a constant value, for large dimensionless travel, which
is close to the value obtained with the Pidduck-Kent model (see Table 4). Wa also note that,
despite the early behavior of the Lagrange trajectory (i.e., the Lagrange and one-dimensicnal
trajectories are quite close for dimensionless travels up to 30), the Lagrange trajectory
diverges from the one-dimensional solution for larger expansion ratios as the Pidduck-Kent

and one-dimensional solutions converge.

The results for JA2 and the octane-hydrogen peroxide mixture are presented in
Figures 7-10. In general, these results are very similar to those already discussed for the
hydrogen case when presented in terms of dimensionless projectile travel and velocity. All
trajectories are nearly identical for C/M of 0.5 and 1.0. For C/M = 3.0, the Pidduck-Kent
trajectories diverge above the one-dimensional trajectories during early travel and converge
tor i;>25, while for C/M = 8.0 and Fp>30 , the Pidduck-Kent solutions have not reached the
asymptotic region and lie above the one-dimensional trajectories. The Lagrange trajectories

14
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’

for C/M of 3.0 and 8.0 lie beiow the one-dimensional trajectories and, in the C/M = 8.0 case,
the Lagrange solutions are expacted to diverge with increasing travel.

7. CONCLUSIONS

The applicability of the Lagrange and Pidduck-Kent gradient models in the simulation of
the interior ballistic process for gases of various molecular weights has been explored using
the Lagrange ballistic problem as the basic framework for the Investigation. The results
indicate that gas molecular weight and sound speed do not impact the validity of these
gradient models, as was anticipated from consideration of the theoretical development of
these models. All computed trajectories for C/M of 0.5 and i.O are nearly identical. The
Lagrange model appears to provide reasonably accurate results up to C/M of about 3.0 (e.g.,
velocities within about 5% of the one-dimensional solution at C/M = 3.0 with increasing
accuracy for lower C/M). Using the Pidduck-Kent model, the calculated projectile velocity
approach.s the one-dimensional solution with increasing projectile travel for C/M of 3.0 and

17




e

8.0. The results also indicate that the Pidduck-Kent and one-dimensional soluticris converge
for expansion ratios characteristic of real guns.
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APPENDIX A:

THE LAGRANGE GRADIENT MODEL
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The Lagrange gradient moclel was developed as a solution to the Lagrange ballistic
problem, which is described in the text and in Appendix B. This gradient model is widely used
in interior ballistic simulations of real guns, for which the original assumption of a preburned
propellant gas must be relaxed. While the assumptions used in the derivation of the Lagrange
gradient model are valid only for low charge-to-mass ratio (C/M), it has been found in practical
applications that the rmode! provides reasonable accuracy for C/M as high as 3.0 (e.g.,
velocities within about 5% of a one-dimensional solution at C/M = 3.0 with increasing accuracy
for lower C/M).

A derivation of the Lagrange gradient model is presented here primarily for completeness.
However, concepts used in the derivation of the Lagrange gradient are also applied in the
development of the Pidduck-Kent solution in Appendix B. Therefore, inclusion of the
derivation provides an easy reference for the reader. This particular derivation of the
Lagrange gradient model was previously published by Morrison and Coffee (1930).

The equations of motion governing the motion of the gas in a constant area gun in region
from breech to projectile base are

%p?+v_g.%+p%{.=0" (A-1)
p[%;v_g_;]%;’ (A-2)
with the boundary conditions
Xgreecn =0 (A-3)
Xgase =Y | (A-4)
Vereecr =0 (A-5)
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d
VBaASE = —5}% =Up, (A-6)

where Uy is the velocity of the projectile.

In the development of the Lagrange pressure gradient "it is assumed al! the propellant
charge (C) is in gaseous form at the time considered.” However, "the theory applies without
alteration if it is assumed that,” prior to consumption of all the propellant charge, "the unburnt
charge moves with the gas, the distribution of the solid along the bore being the same as the
distribution of gas (Corner 1950)." The gas is assumed to be inviscid and heat loss to the

walls is neglected such that the ficw is isentropic.

We now assume that the density of the gas (or gas plus unbumt charge) is uniform over

the regicn behind the projectile, i.e,,

? .9, (A7)
ax
We then obtain from Eq. A1
%L;. . p.g.;. -0
or

Assuming a constant bore area, Ag, (i.e., no chambrage) and noting that p = C/Agy,
Eq. A-8 bacomes

dv _1ay Up (A-9)




Integrating Eq. A-9 over the region [0,x], we obtain
v(X) = (ﬁJup . (A-10)
y

Corner notes that the term "Lagrange approximation” is applied to Eq. A-7 or A-10 and the
Eq. A-7 leads to Equation A-10, but it is not true that Eq. A-10 necessarily implies Eq. A-7
(Corner 1950).

Substituting Eq."A-19 in Eq. A-2, we have

where Up = dup/d!. or

dP Cap X :
_—= " . A-11
% (‘;’z] (A1)

Integrating on [x,y], and noting that

o « \Prase - Ppes) Ag
P M

P(0) = Pgperey

and
Ply) = Pgase»

where Ppes is the bore resistance pressure and M Is the projectile mass, we obtain
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2
P(x) = Pgagsc + —2-%-,(”9,455 - PRES)(1 - -{-] (A-12)
y

Forx =0,
P = Posse + <O (Paase - P A-13
sreccH = Prase -27\7( sase ~ Pres) - (A-13)
The space mean pressure is defined by
P = .lLyP(x)dx : (A-14)
y
and, upon substituting Eq. A-12, we obtain
P = Pgase + T35t ease - Paes) - (A-15)
The kinetic energy associated with the motion of the gas is
KEgas = [Y L Agov? dx . (A-16)
2
Using Eq. A-10, we obtain
2
u y
KEGAS = _Asp_e.[lx:’] -
y? 0
or i
KEgas = =Cu} . (A-17)
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APPENDIX B

THE PIDDUCK-KENT SPECIAL SOLUTION FOR THE MOTION
OF THE POWDER GAS IN A GUN
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The Pidduck-Kent gradient model, like the Lagrange model, is an approximate solution of
the continuity and momentum equations for the gaseous propelling charge in the Lagrange'
ballistic problem. This solution was first suggested by Love and Pidduck (1922). Kent (1936)
noted an error in Pidduck’s solution and presented solutions for both ideal and nonideal
gases. Vinti and Kravitz (1949) have published a detailed treatment of the Pidduck-Kent
gradient model, along with tables for use in computing the parameters which arise in the
model. Corner (1950) also discusses the development of the Pidduck-Kent gradient model

The Lagrange ballistic problem is an idealization of the interior ballistic process in a gun.
It is assumed that the qun is a right circular cylinder (i.e., the chamber and bore diameter are
equa!) closed at one end by the breech. It is also assumed that prior to the start of projectile
motion, the propellant is instantaneously burned, such that the chamber is initially filled with a
quiescent gas of uniform pressure, density, and temperature.” The gas is assumed to b3
inviscid and heat loss to the walls is neglected, such that the flow is isentropic.

At time t = 0, the initial pressure and temperature distributions (as in the case of the
Lagrange gradient model), as well as the initial density distribution of the Pidduck-Kent
solution are nonuniform, decreasing monotonically from the breech to the base of the
projectile. Fixed gradients (i.e., distributions) of system properties throughout the intericr
ballistic process are an inherent characteristic of gradient models. These nonequilibrium initial
distributions are physically unrealistic, but the spatial averages of these distributions must be
consistent with the initial equilibrium conditions of the Lagrange problem. However, as
demonstrated computationally in this work, for finite charge-to-mass ratios, the wave dynamic

solution appears to approach the special solution for large projectile travel, as has been
traditionally assumed.

In this Appendix, a detailed development of the Pidduck-Kent gradient model is presented.

This derivation follows closely that of Vinti and Kravitz (1949). However, the notation is
modified slightly for clarity.

*

Although the Lagrange and Pidduck-Kent gradient modsls arise in the solution of an idealized problem, they are
routinely applied in the simulation of real gun systems. In such cases, the gas is replaced by a “fluid” consisting

of a mixture of the cumbustion gas and burning solid propellant grains. The density of this fluid is based on the
combined masses of the gas and solid phases.
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A Lagrangian formulation is used in the development of the Pidduck-Kent gradient model.
The gas colurnn between the breech and the projectile base is Initially divided along the axial
direction into a very large number of thin, disk-shaped elements. A disk may expand (or
contract) axially, but the mass of gas in each disk is constant (i.e., there is no flow of gas
between adjacent disks). (Eventually, the number of disks will be permitted to become infinite,
[i.e., the thickness of the disks will be allowed to approach zero] such that the solution is
continuous.) The thermodynamic quantities for the gas (i.e., pressure, density, etc.) are
assumed to be uniform within each element, but are assumed to vary from element to element
in the axial direction. Let x be defined as the distance of the midpoint of a given gas element
from the breech and let y be the position of the projectile base along the barrel with respect to
the breech at some arbitrary time, t, as shown in Figure B-1. We define

x(t=0)=x, (8-1)

where the subscript "0* denotes the value of a given quantity at t = 6. The gas is assumed to
obey the Nobel-Able equation of state, such that for a gas element initially located at x,

1 —-— -
PO(XOrO)[m -TIJ— RTy(x0.0) , (B-2)

where F(x,,0) is the pressure of the gas in the element located at x, at t = 0, py(x,0) is the
gas density, and T,(x,,0) is the gas temperature. As is implied by Eq. B-2, the gas covolume,
specific heats, impetus, etc. are assumed to be constants for all elements from the breech to
the projectile base. As in the deveiopment of the Lagrange gradient model, space mean
thermodynamic quantities are defined as spatial averages on [0,)] and, for consistency, the
initial values of thece space mean quantities must correspond to the uniform initial properties
of the gas in the Lagrange problem. This will be addressed in more detail later.

As the projectile accelerates down the barrel, each gas element is assumed to expand

isentropically,
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Figure B-1. Gas Column Between the Breech and the Projectile Base.

7 7
1 _ 1 _ . .
P(Xo't)[p(xo.t) - ﬂ} = PO(XO '0)[-55—(;5:0—)- n ] K(XO) (B 3)

where the adiabatic constant K{x,) is a function of the initial position of the given gas element.
In order to make the problem more tractable, it is assumed that all gas elements follow the
same adiabatic, K, such that

Y
i
P(xg.t)[m - n] = X, . (B-4)

Consider now an element oi gas initially located at x, with thickness Ax, such that the
mass of the gas in the element is p(x,,0) Ag Ax,, where Ag s the cross-sectional area of the
bore. At some later time, 4, the gas element will have moved to a position X(xy, f) and will
have expanded such that its thickness is Ax{x,,f) as shown in Figure B-2. Taking the limit as
Ax(x,,1) approaches zero, the continuity equation for this gas element is then

po(Xo,O) dXo = p(Xo.t)dX(Xo,t) (8’5)

and the equation of motion is
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32 x(xg, 1) _ 3P(xo.t)

p(xg.1) =

e =" (B-6)

which are the continuity and momentum equations in a Lagrangian frame of reference.

Following Vinti and Kravitz (1949), we introduce a new variable

2(xg.t) = x(xq,t) - M [X0pq(xg.0) dxg . (B87)

such that

az(xg.t) _ dx(xq,1) )

5% " Tox Npo(Xp.0) . (B-8)

and

Z(Xo,t) _ aX(Xo,f)
at ot (B-9)
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Rewriting the continuity equation (Eq. B-5)

Z)x(xQ,t) - po(Xo,O)
dXg p(xq.t)

and substituting in Eq. B-8, we have

dz(xg.t) _ 1
T = pO(XO'O){m TI}

We now define
) -1
o[t ]

such that Eq. B-4 becomes
P(xg,t) = K[W(xq.1)]7
and Eq. B-11 becomes

8Z(X0,l)

rrranie Polxg. 0)[W(xe, )] .

Using Eq. B-9, B-10, and B-13, the equation of motion can be rewritten as

822(X0.t) _ K a[W(Xo.()]Y

at? Po(Xo.0) dXg

33
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(B-11)

(B-12)

(B-13)

(B-14)

(B-15)




where we have made use of

dP(xq.t) _ aP(xp.t) axy  plxq.1) BP(xo,t)
9x 09Xy oX Ppolxg.0)  9xg

(B-16)

We now attempt a solution of Eq. B-15 by separation of variables assuming a solution of

the form
z(xqg.t) = f(xg) ®(1) .
Att=0,
!
2(x0,0) = f(x0) 9(0) = [0 - [ po(xg.0) dxg |®(0)
such that
X / !

f(xo) = Xo-7 [0po(xg .0) dxg

and

Substituting in Eq. B-14, we obtain

dz(xg, ) ) df(xg) O(t) = polxg, 0)[W(xq.1)]~"

axO dXo
af{x
and using Eq. B-19 to evaluate (Xo) we have
Xo
34

(B-17)

(B-18)

(B-18)

(B-20)



[1-npolxg.0)]®(2) = Po(X.0)[W(xo. 1)1
or, using Eq. B-12 with W, (x,, 0) = W(x,, 0) to emphasize the initial condition,
-1 -1
[Wixo.t)] ™" = [Wo(x0.0)] " @(t) .

Using Eq. B-17 and B-21 in Eq. B-15, we have

d2o(t) K -y [ W5 (x0,0)]7
flxg) 2 o A ey 2%
o) =2 oy 1o e

and separating variables, we obtain

d2o() _g._. K 9[Wo(x0.0)]7
dt? f(x0) po (%o, 0) 9Xo

(®(t)]”

where B is the constant of separation. Consider now

- YK[Wo(x0,0)]"" 3 Wq(xg.0)

=8,
f(x0) Po(x0.0) 9Xq

where
dWg(xp,0)  dWp(xq, 0) df(xg)  dWp(x0,0)

e aw | ar L Petedl

such that

- YK[Wo(x0.0)]" 3Wo(x0,0) _
f(XO) af(Xo)
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(B-22)

(B-23)

(B-24)

(B-25)




or

[Wo(x0.0)]72d Wy (x0.0) = - .;;?I(xo)df(xo) . (B-26)

Noting that f(0) = 0 and integrating, we obtain

[Wo(x0,0)]7-" - [Wy(0,0)]7" ;_?_2(_%_12”” )2,

or

1
Wo(x.0) = W, (0.0){1 - af?(xo) 177 (8-27)

where

a=__800-1 (B-28)
2Ky[Wp(0,0)]7"

The total mass of propelling gas charge in the chamber, C, is given by

C = Ag [Yopolxg . 0) dxg (B-29)

where y, is the initial position of the pose of the projectile. Rewriting Eq. B-29 in terms of
fixo), we have

/

dHxl) = Ag f’("” Polxg .0) df(x]), (B-30)

Y
C- Asfol( Vpolxg.0) y
daf(xq) 1- npo(xo.O)

where we have again used Eqg. B-19 to evaluate df(xo)/dxo. Noting that

)
Po(x0.0) 1
= - = W, ,0),
1 - npo(xg,0) [Po(xo-o) ﬂ} 0(X0.0)
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defining

fo = f(¥o) = yo -nClAg (B-31)
and using Eq. B-27, we obtain
1
C= ABWO(O,O)J‘O"’ [1 - afz(xé) L df(xé) . (B-32)
Defining
g = aff (B-33)
and
f(x,
Bixg) = __(_f_o_) , (B-34)
b
such that
1(0) =0, (B-35)
Byp =1, (B-36)
and
df(xg) = fpdit () (8-37)

Eq. B-32 becomes
B-38
C = Agly WO(O.O)fo'(1 - aouz(XG))”du(Xo). (8-38)

where n = T;'T is the polytropic index. Vinti and Kravitz (1949) have written Eq. B-38 as

C = Agfy, W(0,0) S(n, a,) (B-39)
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S(n,ay) sfo‘ (1 - an? (x0) " it (o). (B-40)

It is convenient to rewrite Eq. B-40 at this point. Let
q) = ag 12 (x)

such that

Substituting in Eq. B-40, we obtain

1
S(n,aq) = —1,: Jqm 2(1 - qu)"dq(n) (8-41)
2Vao
which gives us
S(n,a) = - 1 Bao(%,n + 1]:21'-‘, (-n,%;.g.;aoJ (B-42)
ag

where Bao (_;.. n + 1) is the incomplete beta function and , F, (—n,.%;.g.;ao) is Gauss’

hypergeometric function. Eq. B-42 will prove useful later in our development of the
Pidduck-Kent gradient model.

Eq. B-40 could be utilized to calculate the parameter g, given a detailed description cf the
initial state of the system. However, Vinti and Kravitz (1948} have developed a more general
equation from which g, can be determined. Note that at the base ¢! the projectile, the

equation of motion becomes
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322z(yq.t) . PyAg
a2 M

where M is the projectile mass and Py is the base pressurs, or, using Eq. B-17,

2
,bd ®(t) _ PoAs ’ (B-43)
dt? M

where Ply,, ) = P,, Using Eq. B-13 and B-21, we have

Py = KW (y0,0)]7 [®@(1)]77
such that

d2o() A
fp L2
at

K
; [Wo(¥0,0)] [@(1)]Y . (B-44)

Separating variables we obtain

1é20(t) _ 5 _ AKX
o] €210 - 5.+ 225 twifyo.0n” (8-45)

where B is the constant of separation introduced in Eq. B-23. Using Eq. B-28 and B-33, we
have

2K
__._3'_’_2 [Wo(0,0)]7" = B= 22 [Ws(yo.0)]7
ERTY o

or
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which, with the use of Eq. B-27 and B-33, becomes

L

2yagM
Y30 X - Agh, Wo(0.0)[1 - 2] . (B-46)

Y -1

Multiplying both sides of Eq. B-46 by S(n,a,) and using Eq. B-39, we obtain

v

2 o
Y - ao(1 - ) 7T S(n, ) =

(B-47)-

zlo
L]
m

which can be used to calculate the parameter a, given only the ratio of specific heats of the
gas and the propelling charge to projectile mass ratio, C/M.

Ratio of Breech to Base Pressursg

The determination of the ratic of breech pressure to projectile basz pressure is now

straightforward. Using Eq. B-27 and B-33, we have

1

Wo(y5.0) = Wp(0,0)[1 - 30]7" (B-48)

or, dividing both sides by ®(t) and using Eq. B-21,

1

W(yo.t) = W(0.t) [1 - ao]V-‘ . | (B-49)

We now make use of Eq. B-13 to obtain

P{0,t) _ _ Y1 (1 - ~{n+1) .
Bt [1 ao} [1 ao] (8-50)
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which demonstrates that at all times during gas expansion the ratio of breech to projectile
base pressure is & constant dependent on y and ap.

Space Mean Pressure, Density, and Temperature

As noted earlier, space mean thermodynamic quantities are defined as spatial averages
on [0,y] and, for consistency, the initial values of these quantities must correspond to the
uniform initial state of the gas in the Lagrange problem. As a first step, we write the equations
for the spatial distributions of pressure, temperature, and density in the gas. From Eq. B-12,
B-13, B-21, B-27, B-33, and B-34, we have

1 ol 1 _ _ 2 -n i
[m n} {m n}ﬁ aon? (xo)] "0 (1), (B-51)
P(xg. 1) = Po(0,0)[1 - agn?(x0)]" " o (0] ~ (B52)
and,
T(xo.1) = To(0,0) [1 - agp?(xo) | [&(t)]'T. (8-53)

Consider first the gas density. We rewrite £q. B-51 in the form
2 n -1
W(xo.t) = Wo(0,0) [1 - agn?(xo) " o(t)" . (B-54)

Performing a spatial average over 0 < i < 1, we obtain

Wt) = Wo(0,0)(@ (1)) [ [1 - agn2(xo) | "dn(x)

or, using Eq. B-40,

W(t) = Wo(0,0)[® (1] , F,(_n,%; _2_; aOJ. (B-55)
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This result can also be obtained from Eq. B-7 and B-17,

z(yo.t) = fp®(t) = y(1) - nfoy°po(xo'.0)dxo’ = y() - Cn/Ag (B-56)

where we have noted that x(y,, f) = y(t) is the position of the projectile base as a function of '

time. Since the average gas density, E_(—rf is the gas mass divided by the gas volume,

ll

—_—

t)

i, n] , (B-57)
P

f,®(1) = 7% (

where y(t) is the position of the projectile base at some time, {, after the start of projectile
motion. Rearranging and using Eqg. B-39 and B-42, we have

{___1_____ _n}ffi‘imu) (B-58)
p(D) ¢
or,

— 4 v

W(T) = W(0,0)(o ()] 2F1L‘”:-%-$—'g—vao)- (B-59)

If we approach this preblem in a slightly different manner using Eq. B-17 and B-31, we obtain

Z(, 0.t) = fp®(1) = (yo - nC/Ag) @(1t)

or,

©

—
(o]

S




Agf
[_.1___ - n]cb(t) - __.BCf.(b(t)

or, using Eq. B-12
W) o(1)] " = WO(C,O)[¢(I)]'12F1( n,.l,.g.,ao) (B-60)

which, with Eq. B-59, gives us

(W] = [W{o)] " ot) . (B-61)

Thus, the spatial average of W(t) which is a function of the gas density, has the same time
dependence as W(x,, #) for each individual gas element, which is given by Eq. B-21. This
result might well have been anticipated as a resuit of the assumption that all gas elements

follow the same adiabatic. ,

We now consider the spatial average of the gas temperature, which will be defined in
terms of the internal energy of the gas, i.e.,

Ei(t)=C ¢ T(1) (B-62)

where E(t) is the internal energy of the gas at any time, 1, and ¢, is the specific heat at
constant volume. Since energy, like mass, is an extensive quantity, we have, using Eq. B-29,

Ei(t) = Aga, [1U T(x0,t) p(x0.1) dX(xo.1) (8-63)

where the integration is now over the gas column at some arbitrary time, t. We first use
Eq. B-7 to change variables

Z(xg.t) = x(Xg,t) - M f ( )dx0 ,
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where, from Eq. B-56,
Zp = 2(yq.t) = y(t) -nC/A; .

Using Eq. B-10 in B-11, we have
dx(xg.t) = [1 - np(xe.1)]" dz(x0,1) (B-64)

such that Eq. B-63 becomes

: -1
E/(1) = Agt, L’bmo.n[WL 5 -n] dz(xo.t) . (8-65)

We now define a new variable

2(x0.t) _ 2060.t) _ KX ®(1) _ H(xo)

Bixg) = — = (B-66)
" 2D z, Ry @)  h
which is identical to Eq. B-34, our original definition of p(x;). We now note that
dz(xg,t) = zydi(xy) = fp®(1t) du(xgp) (B-67)

 where Eq. B-63 and Eq. B-65 are taken at a fixed time, ¢ and thus
1(0) = 0,
and

14()/0) =1

as before. Using Eq. B-51, B-53, and B-67 in Eg. B-65, we obtain
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1

-1
RG] —n} [D(1)] 2y fo‘ [1 - a0n2(x0)]"" du(xe) (B68)

E;(t) = Agq, TO(O,O)[

or, using Eq. B-17, B-31, and B-40,

1 -
Po(0,0)

1.3

-1
Eit) = CvTo(O»O)[ ﬂ] Agfy 2 Fi(-n - 1.-2-;-2—;30)[‘9(?)]1”-

Using Eq. B-39 and B-42, we note that

-1 ’
1 c
Asfo[ - n} = (B-69)
' 1 .
Po(0.0) 2F1("’»—§-§-»3o)
2
such that Eq. B-68 becomes
2Fy(-n - 1»%?-2-;30)
Ef(t) = Cc, To(0,0)[@(1)]" (B-70)
- Fi(-nt:3:a,)
2 1( ’ 2 ’ 2 (=4}

and, using Eq. B-62, we obtain the space mean temperature

L SFi(-n-1,1:3:2a,
T(T) = T4 (0,0) [&(1)] ™ 2 2 (B-71)

1.3
Fi(-n,~;=;a
2Fi( 55 o)

or, using Eq. B-53, and noting that u(0) = 0,
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1.3
Fy(-n, —;—;
2Fy 55 a)

In order to determine the space mean pressure, we note that

or, using Eq. B8-12,

Pty =R T(f) W(t).
Combining Eq. B-55 and B-72 and using Eq. B-21, we obtain

P(1) = AT(0,t) W(0,1) ,F (-n - 1,%;%;30)
or

P = P(0.0) 2 Fi(-n -1, 225 40) .

Now we divide Eq. B-75 by P(y,.f) and use Eq. B-50 to obtain

1.3

(') =(1 _ao)-(rM)2F1(—n—1.-2-§—;ao)-

Plyo. 1) 2

From Eq. B-47, we have

€

(1 - ao)-(n+1) =
2(n + 1) ag 2F1<—n,-;-:-g-:ao>
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(B-75)
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(B-77)



which in Eq. B-76 gives us

1.3
Fi(-n-1,:2:3
2F( 5% o)

P(t) _ €
P(yo.t} 2(n+1)a, Fo(-n. 1.3.
2 1( |—2-v—2'!a())
it can be shown that (see Appendix C)
1.3, 1, 28(n+1) 3.5
- -1 —_ — = - ———————— - n"";—';
2F (-n '35 ) =(1 - &) + 3 2F1(”2 5 a)
or, using Eq. B-77
1.3 2(n+1)g 1.3
Fi(-n-1 i) ————~ oy F(-N=im;
2Fi 515 8) - 21("2230)
2a(n+1) 3.5
—_— o Fy(-n,
+ 3 2F ( 53 )
which, in Eqg. B-78, gives us
3.5
o— F -nv—;"-';
P(f)=+821( 2230)
P(¥o.1) 3 T piai.3
2 1( ,-2-.-2-,%)
or
Pt) =1+ 5
P(ya.t) 5
where
3.5
Fi(-n, = >
%7 .
8 2F1(-n, =11 d)
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Noting that

1.3
F(-n ;=
.2 1( 5% a)

is real and finite on 0 < a; < 1 for n > 1 of practical interest, we see from Eq. B-47 that g, = 0
corresponds to € = 0 and that g, = 1 corresponds to ¢ — . Using the definition of the
Gauss’ hypergeometric function (see Appendix C) we see from Eq. B-83 that § = 3 for

€ = g, = 0 (as expected) and 6 = 2n + 3 for g, = 1. Thus, in the iimit of zero C/M the
Pidduck-Kent solution reduces to that of Lagrange.

As is also demonstrated in Appendix C, a relationship can be derived among the

parameters &, €, n, and 3,

1 1 1 2(n+1) B.84
T 2n+3 [Eo' ’_‘e""‘} (8-84)

which can be used to determine 3 for a given € and n once ay has been calculated. For smail
g, it is easily shown from Eq. B-84 that 4, approaches &/2(n + 1). '

Proiectile Velocity

The velocity of an element of gas is given by Eq. B-9

dx(xg.,t)  dz(xq,t)

at  ~ at
and, using Eq. B-17, we obtain
ax(xg.t) do(t)
U(xgit) = ——uu" = f(x B-85
(X0, 1) 57 (xo0) =7 (B-85)
from Eq. B-23, we have
2
.‘_’_i’é(ﬁ = B[D(N]7. (8-86)
t
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We now define

do(t)

¥ty = —5

such that Eq. B-86 can be rewritten in the form

d2@(t) _ a¥(t) do(t) _ w(ty TE) Bl (1))
dt? ao(t) dt ao(t)

which,. upon integrating with respect to ®(t) and noting that ®(0) = 1, gives us

(1) = ( do(n) ]2 - 28 {1 qo(n-0} (B-87)
dt v-1
and from Eq. B-85
u2(xg.t) = [H{x0)]2 -73_3_1{1 - [o(n)-t-n} (B-88)

From Eq. B-28 and B-33, we have

_f_”_’ia_'ii [W,(0,0)]7 (B-89)

(y-1)1%

B =

where, from Eq. B-13,
K = Py(0,0)[Wy(0,0)] ™

such that
2va -
B = _____0__5 P4(0,0){W,(0,0)]"!
(y - 1)1
or
2yag .
B= 3 RTo(0,0) (8'90)
(y - 1)1
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which gives us
4YRTy(0,0)
u2(x,,t) = ..__._9._.._2_._
(y-1)

At the projectile base, p(y,) =1, such that

4YRT,(0,0)

T a{1 - ony-rn}.
y-

u3(yo.t) =

If we now use Eq. B-61 to obtain an expression for ¢(t), we have

1
= - N
Ot = w(o) _| p(t) - y(t) -nCl/Ag
W(h) LI Yo -NC/Ag |
p(0)
and defining the expansion ratio* of the gas as
y(t) -nC/A
1= ( B .o
Yo - nC/Ag

we have for the projectile velocity

-1
. 4YRAT,(0,0) 1 |
u2(yo.t) = .____9.._.5._ 1 -]~
(y-1)

* Expansion ratio is usualiy defined in terms of initial chamber length, &; . and projectile travel,

xp. such that,

Xp + o -NC/Ag X5+ (1 -11pg)

ef = =
& - nC/Ag (1 -npg)
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aon2(x) {1 - @]~} .

(B-91)

(B-92)

(B-93)

(B-94)

(B-95)




in the form presented by Siegel (1979). We now use Eg. B-72 to evaluate T(0,0) in terms of
the initial energy of the gas. For t= 0, we have

2Fi(-n -1, 2:352)
T(0) = To(0.0) 3 (B-96)
Fi(-n, ==
2F1(-m 55 a)
which, using Eq. B-78 and B-80, gives us
— 2(n +1
T(0) = T,(0.0) {__(__f.__)f_".]p R E)
€ [
or
To(0,0) = T(0) |—° LI (8-97)
1+ £ 2(n+1)a,
)
Substituting Eqg. B-97 in Eq. B-85 and noting that
RTO) _ g0y = &, (B-98)
y-1
the initial specific internal energy of the gas, and
2Y S22y,
Y-
we obtain
2E,¢ L
u2(yot) = — 951 - | L (B-99)
14+ % &
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which is solution to the preburned propeliant, nonideal gas gun assuming the Pidduck-Kent
gradient model, which is discussed in Appendix E. In the limit of very large projectile travel,

Eq. B-95 becomes

u? = 479’1‘0(0,02) Ao (B-100)
(y-1)
which, using Eq. B-37 and B-98, gives us
u? =~ 4yRT(0) £ ) . (B-101)
(y-1)2 €+0)2(n+1)

It has been generally supposed that the Pidduck-Kent solution of the Lagrange problem
approaches the wave dynamic solution at sufficiently large projectile travel. Corner (1950) has
developed an expression of the form of Eq. B-100 for the maximum possible velocity for the
Pidduck-Kent gradient mocel for the case of infinite C/M. Recalling that 25 = 1 for £ — o, we

have

1
2 - (YATo(0.0)) , (B-102)

Umax

which is identical in form to the escape velocity obiained in the characteristic solution of the
Lagrange problem. However, in the Lagrange problem the initial gas pressure, temperature
and density are uniform throughout the chamber. Thus, in the initial, physical state of the gas,
the temperature at the breech and the space mean temperature are equivalent. In the
Pidduck-Kent solution, the initial pressure, density, and temperature distributions decrease

| monotonically from the breech to the base of the projectile, a physically unrealistic initial state
for the system. Thus, the space mean temperature, from which the specific internal energy of
the gas is determined, is lower than the initial breech temperature. Therefore, for equivalent
,as intarnal specific energies, the Pidduck-Kent solution results in a maximum (escape)
velocity greater than that obtained from the characteristic solution of the Lagrange problem for
infinite C/M and infinite travel. From Eq. B-101 we obtain
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| 1 1
Uy = —2— (YRT(0))2 (__?_{’__"_3_ 2 (B-103)

v TGRS
or
3 1 1
P-K -1,z
Unax = [ ! 12 Uggeape - (B-104)

Corner (1950) has mistakenly equated the breech temperature in Eq. B-102 with the initial
temperature of the Lagrange problem and then conciuded that, at least for infinite C/M, the )
Pidduck-Kent and wave dynamic solutions yield the same maximum velocity. As
demonstrated here, the Pidduck-Kent maximum velocity is a~tually somewhat higher than the
escape velocity for y> 1. This difference is about 8% for y = 1.2, 14% for y = 1.4, and 20%
for vy = 1.667. It would appear that, at least for the infinite C/M case, the Pidduck-Kent
solution does not approach the wave dynamic solution at large projectile travel, as has been
treditionally assumed. However, as shown in the comparisons of calculated trajectories for
finite C/M, the Pidduck-Kent solution does appear to approach the wave dynamic solution at
sufficiently large projectile travel.

Gas Kinetic Energy

The kinetic energy of the propelling gas at an arbitrary time, , is defined by

2
1 t d x{xg,t)
KEgas = 5 foﬂ "0 (x0.1) Ag [—"B_{— dx(xg,t) . (B-105)
Using Eq. B-64, B-66, B-67, and B-85 we obtain
KEgas = il "Mafb‘b(f)f1 u?(xq.1) 1 . n - du(xg) . (B-106)
2 0 p(Xg.1)

53




Now, using Eq. B-12, B-51 and B-85, we have

2
KEGAS=_;_Abe¢(t){fb.‘_’%§_’l] Wo(0,0)[0(8™") [1[1 - 2012 (x0)] w2 (x0) d(xo), (B-107)

or
1 do(t) 2 3.5.
KE = _ Anf, Wh(0,0)| f Fi{-n,2:>:a,) . B-108
as = = Asfy of )[b e ]2 1{ 53 o) ( )
Noting that
ao(t) _
f——-——-—-—= vt
b—7 u(yo,t)

and from Eq. B-39

c

1.3
Fi(-n.—;=;a;)
2Fy ( 5150

AB fb Wo(0,0) =

we have
3.5
1 5 2F1("7’—2-§—2-;ao)
KEgas = = C u*(yo.t)
6 1.3,
2F{-n,—; = ap)
22 (B-109)
which, using £q. B-83, gives us
KEgas = (_g.] KEpgoy (B-110)

and

KEroraL =[1 +-§-)KEPROJ- 111
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Evaluation of the Function f(x ):

The equations developed thus far are acequate for solution for the interior ballistic problem
to determine projectile velocity as a function of travel. In addition, the breech, projectile base,
and space mean values of the thermodynamic functions (i.e., pressure, temperature, etc.)
can be calculated as functions of projectile trave!. Given the values of these functions at
the breech prior to the start of projectile motion, Ey. B-51-B-53 could then be used to
evaluate the thermodynamic functions at any arbitrary position along the barrel and, thus, the
spatial distributicn of the functions, for any given projectile travel. However, Eq.
B-51-B-53 express the thermodynamic functions in terms of a dimensionless variable p(x,)
and it is, therefore, necessary to determine the relationship between x, and p(x,) if we wish to
investigate the behavior of spatial variation of these functions in the Pidduck-Kent solution.

The dimensionless function yu(x,) is defined by Eq. B-34,

H(xo) = ";"’ . (B-34)
where
f(xg) = Xq - nfox°p0(x0/,0)dxo/ (B-19)
and
fp = K{yg) = yo - nClAg (B-31)
such that
1(xg) = 71; [xo -1 [ polxg .0} dxq | . (B-112)
We must now evaluate the iﬁtégra!, C(xy),
Clxo) = Ag fo"op(xo’,O)dxo’ (8-113)




such that

Xg - 1 C(xo)/Aa} (B-114)

1ixg) =
° [ Yo - NClAg

where C(xg) is simply the mass of propelling gas between the breech and x,. We note that
1(0) = 0 and u(y,) = 1, as before. The integral C(x;) can now be evaluated in a manner
analogous to the integral in Eg. B-29. Recall that

df(xq)
=1 - 0

a5, NpolXg.0)

such that
/
! dx f
Clxg) = Ag [1" polxq.0) — - dixg) = Ag J3 o wo(xg .0) df(xg) .

(x0)

Using Eq. B-27, we cbtain

1
Clxg) = AgW,(0,0) fo""°’[1 —afz(xé)F:Tdf(xol)

which, with Eq. B-33, B-34, and B-37, becomes

(x0) = Agly Wo(0.0) [0 [1 - ag(n/ (x0))2]" dn” (xo) . (B-115)
Now, let
q(n) = agn?(xo)
such that
1 3
du(xg) = E(aoq(u)) 2dq(y) .
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and

q(0) = 0.
Substituting, we obtain

Kl Kl
Clxo) = Agf Wo(0.0) |50 2 [ g Z(1 - qu)"day) (B-116

or, using Eq. C-17, we have

|
2

| K}
Clxo) = Agls Wol0.0) 1(x0) | (20k2(x0)) 2 [ q(s) 2 (1 - () "o

0

or

Clxq) = Aghy Wo(0,0) p(xo) 2 F (—n,%;%'aouz(xo)]. (B-117)

Using Eq. B-117 in Eq. B-114 and rearranging terms, we obtain

Xo =L1(Xo)fb{1 +nzF1[-n,.;-;.§.;aou2(xO)]} : (B-118)

which is the desired functional relationship between x, and p(XO)'. The numerical evaluation of
this function is discussed in Appendix D.

Summary

The fundamental assumption of the Pidduck-Kent gradient model is that all elements of
gas in a Lagrange gun expand along the same adiabatic (K) such that

PolXo,0) )

1 Y
Po(xo-o)[ n} = K (B-2)
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which is rewritten by defining Wj(x,,0) such that
Po(xg,0) = K[W(x,,0)]" . o (B-13
A new variable is introduced

2(xq.1) = x(x0,1) -1 [Mpo(x5.,0)dxg = Kxg)®(t)  (B-7), (B-17

and a solution of the momentum equation is attempted by separation of variables. An
expression for the total mass of propelling gas in the system is obtained by integrating the gas

density distribution over the length of the chamber,

C = Agly Wy(0,0) 5 F (—n,_;. ;_23.;a0) (B-39), (B-42

where f, = fly,), nis the polytropic index,

7-1

and &, is a parameter which must be determined in order to satisfy this relation. After some

manipulation, a more basic relation is found,
-(ns1) 1.3, 4.
2nag(1 - &) ?_F,(-n,.é.,.é_.ao)-a (B-47
where ¢ is the gas propelling charge to projectile mass ratio.
It is shown than each element of gas evolves in time according to the relation

[Wixo.t)] " = [Wo(x0.0)] T @(t) (8-21
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and, more importantly, that the spatial average of W{x,, t), which is a function of the gas

density, evolves in time in an identical manner

(W] = [W(oy] " o . (B-61)

The ratio of the breech pressure to projectile base pressure is found to be

P(O,t) _rq _ -(n+1) i
BUe) [1 ao] (B-50)

and the ratio of the space mean pressure {o projectile base pressure is

=1+5 (B-80)
P(yo.1) 8
where
2F(-n, 252 4)
1.1 2 2 (B-81)
5§ 3 1.3.
2F1(—n,-§-1—2-1‘aO)

We note that for £ = 0, 8 = 3 such that in the limit of zero C/M, the Pidduck-Kent special
solution reduces to that of Lagrange. We aiso note that in the limit of infinite C/M, § =2 n + 3.
A relationship among the parameters, a,, €, n, and §, which is useful for calculating §, is
presented, '

1ot [1z2men] a9
8§ 2n+3 |3 e

An expression for the space mean gas temperature is also presented

P 2F1(—n~1,-;—;-g-;ao)
T = T(0.1) L,
2F1("n--2—;-é-'a0)
- T(0,1) [2_(_’:8_1_)_‘39}(1 +%J . (B-72), (B-97)
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The gas kinetic energy is found to be

KEGAS = (_;.J KEPROJ (8-110)

such that

KEroraL = (1 + %J KEpgoy » (B-111)

which are easily seen to reduce to the Lagrange result in the limit of zero C/M.

The projectile velocity as a function of expansion ratio is determined to be

v-1
u2(yot) = 2508 | -(i} (B-99)

which is the solution of the preburned propeliant, nonideal gas gun problem as can be
obtained directly from energy considerations. Finally, it is shown that the maximum projectile
velocity obtained from the Pidduck-Kent solution of the infinite travel, infinite C/M Lagrange

problzm is given by

1 1 1
P-K - — -
Umax =[37271}‘2 Li (yRT(o))7}=[37271]5 Ugscape  (B-103, B-104)

where u

oscape S the maximum velocity obtained in the exact solution of this problem.
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APPENDIX C:

DISCUSSION OF INTEGRALS ARISING IN PIDDUCK-KENT
SPECIAL SOLUTION OF THE LAGRANGE PROBLEM
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Several integrals arise in the development of the Pidduck-Kent special solution of the

Lagrange ballistic problem which can be related to the Gauss’ hypergeometric functions and
incomplete "beta” functions (Arfken 1970; Abramovitz and Stegun). Thess relationships prove
useful in the derivation of the Pidduck-Kent solution and in determining its limiting behavior.

The integrals of interest are presented in Appendix B in Eq. B-38, B-68, and B-107,

I = fot (1 ~ 3ol—lz)ndu K

,2 = f; (1 _aouz)n«ﬂdu,

and

b = f;“ - 2n?)"p2dp .

In £q. C-1, we define a new variable g such that

q(1) = &

* The integral in Eq. B-112 defining Cix,) is closely related to /; and will not be considered separately.
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giving us

A 1
1,2 () _gl0g 2 .
h=5% J&l1-4ql"q 2dq. (C-9)
Similarly, Eq. C-2 and C-3 become
-] 1
b=ta® [*l1-4""q 2dq (C-10)
and
3 1
1, 2 (0. _ 0,3 . i
b=ga” [P -q]"q%dq. (C-11)

Gauss' hypergeometric function is defined by (Arfken 1970; Abramovitz and Stegun)

, Fy(a.b;c; z) = “FTE)'I%%??TE PO (1 - 4)eE1 (1 - tz)at, (C-12)

where I'(c) is the gamma function. Forc-b = 1,

T(c-b)=T(1)=1 (C-13)
and,
‘T(C) - r(b + 1) = br(b) =b (C"|4)
&) ~—T1(b) T (b)
such that
2Fi(abib+1;2) = b [1121(1 - t2)2at. (C-15)

We now define a new variable, g = tz, such that

2Filabib+1;2) = 2 [2q5(1 - q)2dg (C-16)
2

64




and, for a = -n and z = a,, we obtain

2F(-nbib + 1320) = 2 [2q5(1-q)"dg (C-17)
g

which is now in a form which can be used to rewrite /;, I, and 4 in terms of Gauss
hypergeometric functions. Comparing Eq. C-9 and C-17, we find that ‘

1 1
ho=aFii-mti3iag)=1a2 [1-4q]"g 2dq (C-18)
2 2 2
and similarly for Eq. C-10 and C-11,
1.3 7 -
L= - = _ z .
L= g Fy-n -1, 5i2030) = 23 © [ [ dg (C-19)
and
1 3.5. '2' n 'é'
,=—- F _ns—-r—y = =
s =3 2 1 ( 5% a) fo dq . (C-20)

The incomplete "beta” functions are defined in terms of Gauss' hypergeometric functions by
(Artken 1970; Abramovitz and Stegun)

b
— Bao(b,n +1) = ,F (-n,b;b + 1,a,) (C-21)
such that
-1 : :
1, 2 1
I1=§ao Bao(E,n+1), (C-22)
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1
1.2 1
;2=,2.a0 Bao(_z..,n+2J, (C-23)
and

3
13=la073a0(.§,n+1). (C-24)

We now Integrate Eq. C-2 by parts to obtain

b=t - 2on?]™ [ w200+ 120 [[1 - 2on?]"uZan, (c-25)

or
b=(1-a)™ +2(n+1)aly . (C-26)

Alternately, we could proceed by rewriting the integrand in Eq. C-2 to obtain,

= f'[1-an?] - agfo‘(1 - an?)"u2dy, (C-27)

or
12 = I1 - ao /3 . (0‘28)

Equating £q. C-26 and C-28. we have

h-agh={(1-2)™ +2(n+1)a,h, (C-29)
which can be rewritten as
1 h (1 - ao)rM
L = —_ - T, X
3 2n + 3 [ao ay (C-30)
From Eq. B-47, we have
2(n + 1)ayl
(1 _ ao)nd - ( ) 0 (0_31)

€
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and substituting in Eq. C-30, we obtain

-13_ - 1 1 - 2(n + 1) (C'32)
i 2n+3|3a €
or
3.5
Fi(-n,=;=;a,)
PEV TR 1 |1 2y (C-33)
1 3 2n+3 ao E

2F1("7--é-§—2-;ao)

which is a relationship between two contiguous hypergeometric functions (Arfken 1970;
Abramovitz and Stegun). Using Eq. B-81 to identify the left-hand side of Eq. C-33 as _;_, we

have
1.1 _2(n+1)] | (C-34)
8 2n+3| 3 3 __,.

Eq. C-28, also an equation for contiguous functions, can be rewritten as

1.3 3.5
Fi(-n -1, ;2 Fi(-n, = ;=4
2 Fi 2230)=1_3021( 55 °)=1_a .35
1.3 3 1.3 3
Fi(-n,~;2:a Fi(-n, .;=;
2Fy ( 5% %) 2Fi 2‘230)

Following the arguments ¢f Vinti and Kravitz (1849), we first note that, from Eq. B-50,

P(yo.t) -1 (ns1) i
o [1 ao] (C-38)
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itis clearthat 0<ay < 1. Since n= and y > 1, then nis a real, positive number.

Thus, if the pressure ratio given in Eq. B-50 is to be a real number and Fo,f) 2 P(y,,.f), it must

follow that 0 < a; < 1. We also rote that the integrals of interest, Eq.s C-1, C-2, and C-3 are

real and finite for n2 0 and 0< a,< 1. Then, from Eq. B-47

e=2(n+1)a(1 —ao)‘(”"”zﬁ(—n,%;.g_;:ao) (C-37)

we see that g, = 0 corresponds to the limit of zero C/M while &, = 1 corresponds to the limit
of infinite C/M. Using Eq. C-15 to evaluats the hypergeometric function for g, = 0, we have

1
2Fy(a.bib + 1;0) =bfo1rb“dt=t°cl,=1. (C-38)

For a5 = 1, the integrals of interest reduce to regular (complete) "beta” functions, giving us

r(l)r(n»,n
I8 = 1) =.;_B(.12_,n R 1]= 1 \2

.2.. Tin+ _3.]
3
e
n
= » c-39
Q(n + l) r(n + _1_) ( )
5 2
r(.;.)rm . 2)
(g =1) = ls[l.n R 2)= Al
l‘(n + i)
2
rf i)
] n(n + 1) 2 (C-40)
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and (
(g = 1) .‘_B(.Zi,n . 1]=_‘.

. (C-41)
2(n + EJ(n + _1..) I‘(n + ..1_)
2 2 2

Recalling that

3.5
F(-na—r—ia(])
27 !
e ks
Fi(-n, ~i=; !
2R 5% )
we obtain for g, = 0
1 _1
- C-43
5% 3 (C-43)
and for g5 = 1,
] B(.g..ni»l) ;
= = . C-44
$ (1 2n+3 (C-44)
Bi—,n+1
\2 ]

This latter relation can be obtained directly from Eq. C-34. Howsver, the zero C/M limit is
shown to be a direct resuit of the solution, in contrast to the argument used by Vinti and
Kravitz (1949) involving expansion of € in Eq. C-31'in terms of &, and substitution of the resuit
into Eq. C-34. |

The ratio L//; arises in Eq. B-72 relating the space mean gas temperature to the
temperature at the breech. For a, = 1, we obtain

12(a0=1)_ (n+1) =2(n+1), 2y

l1(8 = 1) (n+3) 2p+3  y-1




which is the factor arising in Eq. B-101 and B-102 relating the maximum velocity from the
Pidduck-Kent solution for the infinite travel, infinite C/M Lagrange gun problem and the escape
velocity obtained from the exact solution of this problem.
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APPENDIX D:

NUMERICAL EVALUATION OF THE PIDDUCK-KENT PARAMETERS
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The evaluation of the Pidduck-Kent parameters, &, and 8, defined by Eq. B-47 (or C-37)
and Eq. B-82,

e =2(n+1)a(1 - a) (™) 21-',(-1:,_;.;.2_-:1’0) (D-1)
and
1.1 [_‘__-M} (D-2)
8 2n+3| 3 £
where
2Fy (- i 3i30) = [[{1 - ?)" on (09

has been ccnsidered previously by Vinti and Kravitz (1949) and by Grollman and Baer (1970).
Vinti and Kravitz developed an algebraic expression for 8 as a function of n,

11 . 1+ Cy(e.nB(e)n )
= {1 a(a)n[ RO H (D-4)

where the coefficients a(e), B(e), and C,(e,n) are themselves functions of ¢ and n. These
coefficients are tabulated (Vinti and Kravitz 1949) for selected values of € and n such that the
value of the coefficients, and thus, 8 can be determined for arbitrary e (0 s £ < 70) and
n(0.5<n< 5lie., 1.2<v< J) by interpolation. While the computed values of 3 obtained
using the tables of Vinti and Kravitz are quite accurate, this technique is cumbersome and not
well-suited for application in computer simulations. In contrasf. Grollman and Baer developed
extensive tables for § as a function of c and n, for 0<e < 20, and 1.2 < y < 1.3, by numerical
integration to obtain € as a function of a, for given n (see Eq. D-1 and D-3) and use of

Eq. D-2 to obtain §. A least squares fit of the tabulated values nf & was then generated using
a fifth order polynomial function of € and v,

5 .
§=30+ E[a,+£i]s’._ (D-5)
i1 Y
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This expression is easily applied in interior ballistic simulations, and has served as the primary
means for implementation of the Pidduck-Kent gradient model. However, in using Eq. D-5 to
compute §, errors on the order of a few percent are introduced. Additionally, the range of
applicabllity of this equation Is limited, particularly in view of the properties of some novel
propellants being considered in conjunction with the electrothermal-chemical gun.

Our objective, then, is to develop a general technique for calculation of the Pidduck-Kent
parameters, a, and 8, which is valid for arbitrary € and 8, and which is"readily applicable in
computer simulations. As a by-preduct, we also develop techniques to gvaluate the cther
functions encountered in the Pidduck-Kent solution of the Lagrange problem.

The approach selected to develop a generally applicable method for determination of the
Pidduck-Kent parameters is direct solution of Eq. D-1 for a,. The hypergeometric function

may be expressed as an infinite series of the form, )
. @) = T(k+d)T(k+y) xX
9 L5F {(¢,v;8;x) = )3 - D-6
2F1(0.v:0:) T(9) () keo T(k + 8) K1 (B-8)

where the series converges for 8 - y - ¢ >0and |[x] < 1. For 0 = y + 1, the Gauss
hypergeometric function reduces to the incomplete "beta® function for 0 < x € 1 and the
regular (complete) "beta” function for x = 1. For the functions of interest in the Pidduck-Kent
solution, 8 =y + 1 and ¢ = —-nor - (n + 1) where 6, y and m are positive numbers such that
B -y -6 >0 We also note that x'= a5 with 0 < g, < 1, such that the series in Eq. D-6

converges for the values of parameters considered here.

We are generally interested in Gauss hypergeometric functions of the form

s Fi(1 -b,a;a+ 1,x) =

Ma+1) 3 T{k+1-bT(k+a) _)_(_’j . (07
T(1 - D)T(a) k=0 T(k+1+a) K1
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We will now simplify this expression using the properties of the "gamma” function. First, we

note that
I'(a+1) _ al(a) =2
I'(a) I'(a)
and
T(k+a) _ I'(k + a) 1

T(k+1+a) (k+al(k+a) k+a
We now rewrite Eq. D-7, to obtain

5 K
LF(1 -baa+1ix)=1+az Lkr1-b) X

The ratio of "gamma” functions can be expanded to give us

T(k+«1-b) _ 1
I(1-0b) T(1-0b)

or
'tk+1-b) X .
. = 1 (k +1-b -_I)
T(1-5) i
such that

-~ Kk
>Fi(1 -baa+1;x)=1+ % ﬂ(k+1—b-—j)( a )_._

X
knl fui k+a| k

ki I(1-D) T(k+a)kl’

{(k-b)(k-b-1)...... (1 -b)r(1-0)}

(D-8)

(D-9)

(D-10)

(D-11)

(D-12)

Eq. D-1 can now be solved iteratively using the Newton-Raphson technique. We define

1.3

Glag.mie) =2(n + 1) ap(1 - &)™V 2 Fy(-n.2i258) - e =0

2
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such that

d G(&y,n,c) _ ) 4 1 . n+1
T-[G(ao.n,e) €] = Toa

1.3
82F1(-n--2-:-§:ao)

—g.) (1)
+2(n+ 1)ay(1 -a) 35 (D-14)
where
~ k k
1.3 . 1 =
Fil-n,l:2:ayl=1+ % N(k-n-j)—0n_ 0% D-15
2‘("22‘3") * & Dot = (D-15)
and
1.3
82F1(-n.—;-;ao) - K k-1
22 Josnk-n-pt B (D-16)
da kel ot 2k + 1 &I

" An initial estimate for a, is obtained using the Groliman and Baer (1970) formula
(Eq. D-5) to calculate 8" and Eq. D-2 to calculate 2. Successive values of a{ are then
calculated iteratively using the Newton-Raphson equation

-1
IS i 9G(a , M £
i = a§ - G(aé’),n,a)[__(gg_o___). m} (D-17)
4

until the desired accuracy is achieved.

In order to improve convergence of the infinite series in Eg. D-7 for 0.65 < x £ 1.0, we

consider the integral representation of the hypergeometric function

o Fy(1 -b,a;a+1;x)=_€.f"r3-’(1 - nbtar, (D-18)
‘ x? 0
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Changing variables, we define

g=(1-1)
such that
dq = - dt
q(0) = 1
and
g(x})=1-x
giving us
. a (1 -
2Fi1 - baia s 130 - 2 [l (1-q*'q>"aq
or

> Fy(1 -b,a;a+1;x) = ._‘:’35

T4 - gyatgbtqg - [1X(1 _ gqya-1 01
x{fﬁ )*"q>"dg - [[(1 - @)* > dq }.

J0
Using Eq. D-18 and rewriting, we have

X2 E(1-baasi: U =%° Fi-abbei D-19
7 2Nl -baar 1 =B(ba) - e p AU - abib + 131 - %) (0-19)

where B(b,a) is the regular (or complete) "beta” function. Recalling that the incomplete "beta”
function and Gauss hypergeometric function are related by

a
B,(a.b) = % o Fi(1 - b,a;a+ 1;x) (D-20)

we obtain from Eq. D-19,

B,(a,b) = B(b,a) - By_, (b, a) (D-21)
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which (Abramovitz and Stegun) we might have used as the starting point to obtain the desired
relation, Eq. D-19. From the symmetry of the "beta” function, i.e.,

B(a,b) = .’I:_i(%ﬂ;_%l - B(b,a) , | (D-22)

we see that Eq. D-21 can be rewritten as
B,(a,b) = B(a,b) - By_,(b,a) _ (D-23)
and that B(b,a) could be similarly replaced in Eq. D-19.
Fetuming now to Eq. D-16 for the arguments of interest, we have

1

ZaozzF, (-n,_;_.;._g.;ao] = B(.%.,n + 1]

1 n+1 '

where
r(_’_]r(n)
1 5
B(_,n + 1) =\ (D-25)
2 3
Tln + =
2)
1
r(_’z_] =x?, (D-26)




“ K
25[%H%*ﬁn+m1—aﬁ=1+ 2H(k+%-j]

n+1 (1-a)k

(D-27)

k+n+1 ki
We also require the derivative with respect to a,,
32F1(_;_;n+1;n+2;1-30) - k
ez mnfkst
0, ket jut 2

ned k(1 -a)*! (D-28)

k+n+1 k! ’

Therefore, for a, > 0.65, Eq. D-13 and D-14 become

1
m&mw=2w+1MM1~%Y“”’%%?[N%m+1)

1 - n+1
-i—ﬁﬁ%—-zﬂ(;n+1m+2rl-%]] - € (D-29)

and

0G(ag,n,€e) 1 n+1 1
g LG ej{;,,; % 7%

1
+ 2(n + 1) a1 _ao)-(nn) %30?(1 -ao)”{zﬁ(%;”* 1;n+2;1 —ao)

1. . )
1 -2 82F1(.é.,n+1,n+2,1 - &

n+1 ddg

Mo’

(D-30)
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In practice, a, is generally less than 0.5 for the values of € and y of interest. However, we do
utilize this alternate formulation in comparison of &, and 8 calculz*ed using the other
techniques (Vinti and Kravitz 1949; Grollman and Baer 1970).

The computational technique described above has been implemented in a computer
program, which is presented in Appendix F. This program has been used to calculate a, and
d for the values of € and n from the tables of Vinti and Kravitz (1849). The results of these
calculations are presented in Tables D-1-D-4, along with corresponding values of g, and 8
obtained using the techniques developed by Vinti and Kravitz {1949) and Grollman and Baer
{1970). Comparing the values of a, and § calculated using the techniques presented here
with those of Vinti and Kravitz, we see that they generally agree within 1 part in 10°. We note
that Vinti and Kravitz (1949) have estimated that values of &, and § calculated from their
tables have an accuracy of 1 part in 6,700 and 1 part in 5,000, respectively. The
convergence criteria for the MNewton-Raphson iteration used in our calculations provides an
accuracy of at least 1 partin 10° ir. the determination of a, Therefore, the technique
presented here is at least as accurate as that of Vinti and Kravitz over the range of € and y
considered. As noted, this technique has been implemented in a computer program,
therefore, our initial objective has been accomplished. We also note that the accuracy of the
Groliman and Baer (1970) formula is somewhat less than that of the other two appreaches,
varying fromm about 1 part in 3C0 for charge-to-mass ratios around 3, to about 1 part in 1000
at higher and lower charge-to-mass ratios.

Groilman and Baer {1570) have published tables of the Piddii~*-Kent parameters (3) for
0 < e <26 inincrements of 0.01 and for 1.2 < y< 1.3 in increme...s of 0.01. These results are
based on a numerical integration to obtain ¢ as a function of a, for given n and use of
Eq. D-2 to calculate 8. The values of § at the tabulated points we.e obtained by interpolation.
Selected values of § from these tables are presented in Tables D-5-D-7, along with
corresponding values of 3 calculated using the least squares fit of Groliman and Baer (1970)
and the technique developed in this work in order to assess the accuracy of the current
computational method for 10 < € £ 20. As can be seen from these tables, our values agree
quite well with the tabulated values of Grollman and Baer. The accuracy of the Grollman and
Bagr least squares fit is comparable to that noted earlier at lower charge-to-mass ratios.
Finally, we note that the accuracy of the tabulated values of § from Grollman and Baer is
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5 parts in 10° (based on the convergence criteria for their numerical integrator) which is
consistent with comparisons to values of § obtained using the technique devsloped in this

work.

As an additional note, we point out other applications of the techniques developed in this
Appendix. In order to calculate x, as a function of u for 0 < u < 1 from Eq. B-118, or to
evaluate the other hypergeometric functions arising in the Pidduck-Kent solution (i.e., Eq. C-19
and C-20) we can utilize Eq. D-12 and D-18.

The computer orogram used to calculate a, and & with the numerical method described
above has been incorporated into the lumped parameter, interior ballistic code, IBHVG2.
IBHVG2 is a standard, well-documented, 1B model for solid propellant guns containing the
Grollman and Baer least squares fit for . The IB code was modified to permit the use of
either the least squares fit or the numerical technique described in this report to determine g,
and 9.

Since the accuracy of the least squares fit decreases with increasing €, a sample problem
of interest with charge-to-mass ratio of 3.003 was examined. A 120-mm gun with 7 perf, JA2
propellant was chosen as a baseline. The values of a,, 8, maximum breech pressure .and
muzzle velocity for each case is shown in Table D-1. Three cases are presented: (1) least
squares fit with an optimized web; {2) numeric method using the web determined in (1); and
(3) numeric method with an optimized web. '

A comparison of the three cases in Table D-8 shows that the numeric method gives
approximately a 0.1% difference in maximum breech pressure and a 0.03% difference in
muzzle velocity compared to the least squares fit for calculating & for a given, optimized web.
However, if the web is re-optimized, the differences drop to 0.007% in maximum bteech
pressure and 0.604% in muzzle velocity. Thus, for high charge-to-mass ratios in a regime of
interest (i.e., ~ 3 in this application) differences in predicted gun performance using fitled or
numerically calculated values for & and a, in the Pidduck-Kent gradient are considered
insigniticant.
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Table D-1. Comparison of Pidduck-Kent Parameters for y = 1.2

Vinti and Grollman and Morrison et al.
Kravitz (1949) Baer (1970)

£ a, 3 a, o a, 5
0.2 0.01557 3.06355 0.01556 3.05887 0.01557 3.06352
0.4 0.02927 3.12164 0.02926 3.11479 0.02927 3.12159
0.6 0.04150 3.17532 0.04149 3.16790 0.04150 3.17517
0.8 0.05255 3.22502 0.05252 3.21837 0.05255 3.22497
1.0 0.06260 3.27150 0.06258 3.26633 0.06260 3.27156
2.0 0.10259 3.46897 0.10264 3.47325 0.10259 3.46887
3.0 0.13184 3.62597 0.13201 3.63614 0.13184 3.62604
4.0 0.15481 3.75762 0.15502 3.76739 0.15481 3.75754
5.0 0.17365 3.87054 0.17381 3.87664 0.17366 3.87099
6.C 0.18963 3.97123 0.18962 3.97115 0.18962 3.97099
7.0 0.20343 4.06084 0.20328 4.05609 0.20342 4.06053
8.0 0.21558 4.14194 0.21533 4.13486 0.21557 4.14168
8.0 0.22641 4.21608 0.22616 4.20939 0.22640 421593
10.0 0.23616 4.28408 0.23601 4.28047 0.23617 4.28440
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Table D-2. Comparison of Pidduck-Kent Parameters for y = 1.25

Vinti and Grollman and Morrison et al.
Kravitz (1949) Baer (1970)

€ a, ) &, X a, 8
0.2 0.01866 3.06093 0.01866 3.05648 0.01866 3.06097
04 0.03505 3.11872 0.03504 3.11009 0.03505 3.11566
0.6 0.04866 3.16816 0.04964 3.'161'01 0.04968 3.16801
0.8 0.06281 3.21577 0.06279 3.20936 0.06281 3.21572
1.0 0.07477 3.26027 0.07474 3.25529 0.07477 3.26033
2.0 0.12211 3.44893 0.12217 2.45312 0.12211 3.44884
3.0 0.15649 3.59850 0.15670 3.60841 0.15849 -3.59856
4.0 0.18335 .  3.72355 0.18360 3.73312 0.18334 3.72347
5.0 0.20527 3.63054 0.20548 3.83662 0.20528 3.83098
6.0 0.22378 3.92579 0.22379 3.92591 0.22377 3.92553
7.0 0.23972 4.01030 0.23955 4.00601 0.23971 4.01001
T.0 0.25370 4.08667 0.25342 4.08019 0.25369 4.08644
9.0 0.26612 4.15634 0.26585 4.15033 0.26612 4.15624
10.0 0.27727 4.22015 0.27713 421718 0.27729 /.22051
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Table D-3. Comparison of Pidduck-Kent Parameters for y = 1.3333

Vinti and Grollman and Morrison et al.
Kravitz (1949) Baer (1970)

£ 2, ) ay ) a, )
0.2 0.02329 3.05716 0.02328 3.05288 0.02328 3.05713
0.4 0.04368 3.10933 0.04366 3.10306 0.04368 3.10928
0.6 0.06179 3.15745 0.06176 3.15066 0.06179 3.15732
0.8 0.07806 3.20194 0.07802 3.19584 0.07805 3.20190
1.0 0.09281 3.24349 0.09277 3.23872 0.09280 3.24354
2.0 0.15078 3.41909 0.15083 3.42293 0.15077 3.41902
3.¢ 0.19244 3.55765 0.19267 3.56682 0.19243 2.55772
40 0.22471 3.67305 0.22498 3.68175 0.22469 3.67286
5.0 0.25085 3.77136 0.25104 3.77661 0.25085 3.77177
6.0 0.27279 3.85854 0.27275 3.85808 0.27278 3.85837
7.0 0.29158 3.93577 0.29132 3.93091 0.29155 3.93552
8.0 0.30797 4.00526 0.30758 3.99821 0.30794 4.00510
9.0 0.3224¢ 4.06864 0.322G7 406176 0.32245 4.06849
10.0 0.33545 4.12640 0.33518 4.12228 0.33544 4.12670
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Table D-4. Comparison of Pidduck-Kent Parameters for y= 1.5

Vinti and Grollman and Morrison st al.
Kravitz (1949) Baer (1970) :
£ a, $ a, ) a, 8

0.2
0.4
06

08

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
3.0
10.0

0.03097 3.05078
0.05794 3.09705
0.08177 3.13964
0.10307 3.17900
0.12230 3.21565
0.18696 3.36984
0.24966 3.45055
0.28988 3.59030
0.32208 3.67490
0.34879 3.74927
0.37147 3.861492
0.39107 3.873861
0.40829 3.92687
0.42358 3.97536

0.03096 3.04690
0.05792 3.09132

. 0.08174 3.13341

0.10303  3.17329
0.12225  3.21108
0.19702 = 3.37259
0.24991  3.49745
0.29014  3.59507
032217  3.67855
0.34853  3.74497
0.37085  3.80567
0.39020  3.86150
040732  3.91406
0.42267  3.96401

003097  3.05075
005794  3.09700
008177  3.13954
010307  3.17895
042230  3.21569
019636  3.36978
024366  3.48060
028388 358025
032209  3.67514
034878 374912
037145  3.81466
039106  3.87348
040828  3.92682
042360  3.97560
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Table D-5. Comparisons of Pidduck-Kent Parameter §;

y=1.2and y=1.22 for ¢ > 10.

y=12 y=122
Groilman and Baer (1970) | Morrison et al. | Groliman and Baer {1970) | Morrison et al.
£ CALC FIT CALC FIT
_;0 4.2844 4.2805 4.28440 4.2581 4.2545 4,25808
12 4.4073 4.4115 4.40727 43777 4.3824 437773
14 4.5153 4.5233 4.51525 4.4828 4.4912 4.48276
16 46116 4.6128 4.61164 457584 4.5781 4.57642
18 4.6387 4.6856 - 4.69871 4.6610 4.6516 4.68095
20 4.7781 4.7811 - 4.77814 4.7380 47416 4.73799
Table D-6. Comparisons of Pidduck-Kent Parameter 3,
y=1.24 and y = 1.26 for ¢ 2 10.
v=1.24 , y=126
Groliman and Baer {1370) | Morrison et al. | Groliman and Baer {1870) | Morrison et al.
£ CALC FIT CALC FIT

10 4.2328 4.2294 4.23279 4.2085 4.2051 4.20846
12 4.3474 4.3541 4.34935 4.3221 4.3268 4.32208
14 4.4516 4.4602 4.45157 4.42186 4.4301 4.42161

16 4.5426 4.5446 4.54263 4.5102 45121 4.510?0 -
18 4.6248 4.6158 4.62475 4.5900 45812 4.59001
20 4.6995 4.7035 4.69952 4.6626 4.6685 4.66264
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Table D-7. Comparisons of Pidduck-Kent Parameter §;
y=1.28 and y = 1.30 for ¢ 2 10.

y=1.28 =130
Crollman and Baer (1970) | Morrison et al. | Grollman and Baer (1370) | Motrison et al.
3 CALC FIT CALC FIT
10 4.1850 418186 4.18504 4.1625 4.1588 4.16248
12 4.2958 4.3003 4.29584 4.2706 4.2748 4.27059
14 4.3928 4.4009 439282 4.3651 4.3727 4.36512
16 4.4790 4.4806 4.47904 4.449 4.4502 4.44909
18 4.5567 45476 -4.55666 4.5246 4.5151 4.524862
20 4.6272 4.6307 4.62724 45932 4,5960 4.59324

Table D-8. Comparison of Influence of Calculating § and a, Using Least Squares Fit vs.
Numeric Method on Gun Performance

Max Breech Muzzle
Calculation S &, Pressure Velocity
{MPa) (rmvs)
Fit 3.62239456 0.14475450 690.0536 2461.12
{optimized web)
Numerical method 3.61239195 0.14458433 689.2609 2460.30
(same web)
Numerical method 3.61239195 0.14456433 690.1069 24861.03
{optimized web)
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APPENDIX E:

LIMITING VELOCITY FOR PREBURNED PROPELLANT,
NONIDEAL GAS (PPNIG) GUN
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The statement of the preburned propellant, nonideal gas (PPNIG) gun problem is identical
to that of the Lagrange ballistic problem. 1t is assumed that the gun is a right circular cylinder
(i.e., no chambrage) closed at one end by the breech. (Siegel [1979] relaxes this assumption
and treats preburned propellant gun cases with and without chambrage. For our purposes we
consider only the latter.) Prior to the start of projectile motion, the propellant is assumed to be
instantaneously burned, such that the chamber is initially filled with a quiescent gas of uniform
pressure, density, and temperature. The gas is assumed to be inviscid and heat loss to the
walls is neglected, as are losses due to resistive forces (i.e., the flow is assumed to be
isentropic). The solution of this problem can be accomplished either by use of a grédient
model, as in Appendices A and B, or by numerical integration of the equations of motion for
the system. If, however, the objective is to determine a limiting velocity for this problem, it is
assumed that the projectile travel and charge-to-mass ratic (C/M) are permitted to approach
infinity. The solution of the resulting problem is then straightiorward.

Characteristic Solution

The characteristic equations for an effectively infinite travel, infinite C/M prehurned
propellant gun is presented by Siegel (1979) for the ideal gas case. An extension to the
nonideal (Nobei-Abel) gas equation of state is presented, following the development of Siegel.

When the projectile begins to move, a rarefaction wave moves back into the quiescent gas
at the speed of sound, c,. If the chamber is sufficiently long, either there will be no wave
reflections from the breech or the reflected wave will not reach the projectile base prior to
muzzle exit. The equation of state of the gas is

Pl —nl-RT,, (E-1)
Po
the gas internal specific energy is
RT
Eyj=_——2, (E-2)
Y- 1

91




and the gas sound speed is

2 YP, YRT,

= ) E-3
Po(1 - npo) (1 ~nPo)2 =)

We note that, consistent with our assumptions regarding the initial state of the system, the
thermodynamic properties of the gas are uniform throughout the gas such that space mean
and local values of any quantity are equal. Since the gas is assumed to expand isentropically

as a result of projectile motion,

OE (.‘f] - (EEB) (E-5)
\ S s

where s denotes constant entropy. Since we have assumed the expansion process is
isentropic, this subscript will be dropped. We note that the definition of the sound speed has
been used in Eq. E-5 to relate dP and op, i.e.,

c2= (3’_’] . (E-6)
s

Using Eq. E-1, E-3, and E-4, it can be shown that

y+1

1
cp = YPo(YAT,) 7[.5.} 2y (E-7)
0
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Substituting Eq. E-7 in Eq. E-5 and integrating, we obtain

(E-8)

or

1
7 (, W
(AT ™ 1 P Zv[2vP |- 1P (E9)
1P, P 71 7—1

From Eqg. E-3 we note that

1
X2 < oft - mp) = (yAT) 2 (E-10)
cp
such that
1

§=(T§T)hﬂﬂ2 (E-11)

The identical resuli is obtained in the case of an ideal gas, where ¢@ T
The characteristic soluiion for the system is
u+&=¢, (E-12)

where u (P €, = 0. ltis convenient to evaluate & and i using Eg. E-9 which can be
rewritten in the form
5 I il |
= RT,)? 2y E-13
: (7_1Jw . [POJ (E-13)
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1 1-1

2 2 P 12
(2 VyaT)Z |1 - |2 |2 E-14
’ (Y-J(Y g ("’o] o

or
(y-1)u |
B PR L (E-15)
P 1

When the gas pressure at the base of the projectile drops to zero, the gas can do no more
work and the projectile has attained the maximum possible velocity or the "escape velocity,”
1
2

2

Usscape = (—;—-1—] (YRTO) (E-16)

While the escape velocity does not represent a physically attainable velocity, it does serve as

an upper velocity limit for gas-driven guns.

The relationship between projectile velocity and projectile travel is obtained from the
equation of motion,

dup
M_.(_ﬁ. = PpAg. (E-17)

Evaluating Eq. E-15 at the projectile base and substituting in £q. E-17, we have

du (v - Hu ]"2'1
M2 o poaglt - 7 0% v
dt 1

2(YRT,)?
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or

du (y - VY, 37
Mup—2 = PoAg|1 - 21
P
2(yRT,)?
Integrating, we have
P,A ( )1 (y-1)u -2
X o8B / _ u,/{yRT,) 2 Y - P —7-:7 / /
fo" dxp—fo" ° 1-____._._._1_ updup
2(YRT,) 2
1
and defining a new variable, z = u,/(vAT,) ? , Eq E-19 becomes
N
PoAaxng,-z1_ (R P =
MyRT, Jo 2
which gives us the desired result
2 _y+tfy 1=t Y%
y-1 y-1 2 . 1
PoAgX, 2 | (YAT,) 2 >
= +
MyRT, v+ 1 7+l
1-7- 1 Up -1
2 i
\ (YRT,) 2 J
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We now introduce reduced variables tased on those suggested by Siegel (1979)

P,A
o (E-21)
MYRT,
ard
n
T, = Up(YAT,) 2 (E-22)
such that Eq. E-20 becomes
2 y+1 R A
2 |y-1 7¥- {1 7P }
X, = i RS (E-23)

We note now that the reduced projectile travel can be rewritten in terms of the projectile C/M,

g, for finite chamber length x,,

v £ XP '
Xp = o ™D E-24)
P YT =) %o ‘
which makes it possible to relate reduced travel to expansion ratio as defined in
Appendix B
X, + Xg(1 -
g = p *+ Xol NPo) . (E-25)
Xo{1 - Mpo)
Substituting Eq. E-24 in Eq. E-25, we obtain,
x hrwd
g =P 1Y%, (E-26)
(1 - ﬂpo) X €
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We also note that the reduced projectile velocity (Eq. E-22) can be rewritten in terms of the
initial, specific internal energy of the gas (£,) to give us

5l
Tp=tp[rly - 1E) 2. (E-27)

These equations are used in the text in plcts cf ballistic trajectories.

- Solution Using Pidduck-Kent Gradient Mods!

The Pidduck-Kent solution to the Lagrange ballistic problem (i.e., the projectile veiocity as
a function of gas expansion ratio) is obtained in Appendix B in conjunction with the derivation
of the gradient model. We show in this section that this solution can also be obtained in a
straightforward manner from tha requirement that energy be conserved. The initial, total gas
internal energy is

_ CRT,

E ) E'28
0% = (E-28)
tha initial space mean prassure is
-1
— -1)E
Pre[Lon| Ar,- L NE (£29)
Po ABXO - CT]

and the space mean pressure at any projectile travel (xp) is

- 1YE(x
Ag(xy + Xp) - Cn
where the intemal energy at % is obtained by noting that, in the absence of dissipative
mechanisms,
E(xp) = Eo - KEppay -~ KEgas - (E-31)
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As demonstrated in Appendix B, for the Pidduck-Kent gradient model,

P(x,) = (1 . _g_] Py(x,)

and
€
KEgas = (—g)KEPHOJ -
*’;; Combining these equations, we have
1 2 £
X E(xp)=Eo—.2_Mup (1 + 8)
or
- 2E
Pplx) = X1 “F0 2 ! .
1 +_§ Ag(x, + Xp) - Cn

The equation of moticn for the projectile is given by Eq. E-17

du
M"dTp = PpAg .

Using Eq. C-33 in Eq. C-17 and rearranging terms, we have

du -
vy P o ¥ |(2E,) - up2 !
dx, 2 || +_§_ Xp + Xo(1 = Mp,)
or
‘ ot /
2 fup Up dUp -fxp pr
y-170 0 7 '
£ (QEO)—up’z Xp + Xo(1 - 1p,)
1+5L
"3
98
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(E-33)

(E-34)

(E-35)

(E-17)

(E-38)

(E-37)



from which we obtain the desired result

where £ is the initial, specific internal energy of the gas, and

Xp + Xo(1 - 1py)

€=
X, (1 - Mpy)

is the expansion ratio ot the gas. In the iimit of infinite C/M and infinite expansion ratio
(Eqg. E-38) yieids the maximum projectile velocity for the Pidduck-Kent solution

(u ”"‘)2 =2(2n +3)E,

ma

or, recalling that n = _.1_1. )

Y-
1
P-K _[3y-117

Umax - 27

Comparing with Eq. E-18, we see that

(55 el

(E-38)

(E-39)

(E-40)

(E-41)

(E-42)

as obtained directly in Appendix B (see Equation B-104) in the derivation of the Pidduck-Kent

solution.
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APPENDIX F:

COMPUTER PROGRAM FOR CALCULATION OF
PIDDUCK-KENT PARAMETERS
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program pidduck

Pidduck-Kent constants DEL and AQ

Note: Accuracy is poor for charge-to-mass ratio < 1E-03
Values of DEL and A0 are not calculated for EPS = 0
lteration tails for EPS < 1E-05

24 March 1991

Converted from BASIC to FORTRAN
Converter: Caledonia Henry
Date: 30 Jan 1992

OO0 000O0

dimension a{5), d(5)

data (a(i),i=1,5),(d(i),i=1,5)/~-.003659837,-.006928818,
*.0006852334,-.00003094782,.00000052914086,.3667921 -.03838811,
*.003275623, -.0001455872,.000002498742/

Pl=4.0"atan(1.0)

c Open file for output
open(9,file="pkconst.out’)

c Input GAMMA and Charge-to-Mass Ratio

898 write(8,'(a)’) "Input Gamma and Charge-to-Mass Ratio”
read(5,") gam, eps

c
c calculate ¢n and cnn
c
cn = 1.0/(gam-1.0)
cnn=c¢cn + 1.0
¢
c Calculate initial estimate for Delta and AO
c Using Grollman and Baer formula.
c
c Note: Accuracy decreases rapidly for eps > 20
c
del = 3.0
do100i=1,5

de! = del+(a(i)+d(i)/gam)*(eps**i)
100 continue

c
if(eps.gt.0.0) go to 200
az =0.0
go to 211

c

200 az1 = (((2.0°cn)+3.0)/del)+((2.0"(cn+1.0))/eps)

az = 1.0/az1

c
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/ 211 write(9,'(a)") '"GROLLMAN AND BAER LEAST SQUARES FIT'

write(9,1000) eps, cn, gam, del, az
1000 format(1x,"EPS = “,18.4," N = ".18.4," GAMMA = "f7.4" DEL =",

- '19.6," AOQ = ",19.6)
c
if(eps.gt.0.0) go to 224
azzz = 0.0
dell = 3.0
- go to 338
""" 224 if(az.t.0.7) go to 226
) az =0.7 '
e c
c if A0 > 0.65 then use alternate solution
c
226 it(az.gt.0.65) go to 250
c
c Newton-Raphson iteration for AQ <= 0.65
c .
228 =0
azz = az
j=j+1
c
236 call g0g1g2le( g2, azz, cn, eps,cnn)
azz2z = azz2-g2
it (abs(g2).1t.1.E-08) go to 334
c
az22 = azzz
if(azz.le.0.65) go to 236
. az = azz
/'. C
! ¢ Newton-Raphson Iteration for A0 > 0.65
c
c First calculate Beta function - B(0.5,CN+1.0)
c
250 w=05
‘ gu = sqrt(P))
S w=c¢cn+1.0
call gamfun{gamma,w)
gv = gamma

266 w=cn+15
call gamfun(gamma,w)
guv = gamma
beta = gu*gv/guv

c
c now proceed with iteration
c

j=0

azz=az
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OO

308 | = j+1

334
338

420

540

call g0g1g2gt ( g2, azz, cn, eps, cnn, beta)
azzz = azz - g2

if (abs(g2) .lt. 1.E-06) go to 334

azZ = az22

if (azz .gt. .65) go to 308

az = azz

go to 228 -

dell = ((1.0/azzz)-((2.0*(cn+1.0))/eps))/(2.0"cn+3.0)
dell = 1.0/dell

write (9,'(a)’) 'CALCULATION® s ##renveze=
write (9,1000) eps, ¢n, gam, dell, azzz

close(9)
end

subroutine g0g1g2le ( g2, azz, ¢n, eps,cnn)
subroutine for A0 <= 0.65

X=azz
prod = 1.

fact = 1.

sum =1,

summ = 0.

k=0

k=K+1

prod = prod*(k-cn-1.)

fact = fact * k

arg = (x""k)/(2.0'k+1.0)

argg = k*(x**(k-1))/(2.0'k+1.0)
term = prod*arg/fact

termm = prod*argg/fact

sum = sum+term

summ = summ-+termm
if(abs(term).lt.1.E-10) go to 540
go to 420
g0=(2.*cnn"(x/((1.-x)"" wnn))*sum)-eps

g1=(g0+eps)*((1./x}+(cnn/(1.-x)}))+2. can*(x/((1.0-x)**cnn))*'summ

g2 = g0/g1
return
end

subroutine g0g1g2gt ( g2, azz, cn, eps, cnn, beta)
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670

- .- 800

920

860
970

subroutine for A0 > 0.65

x = 1.0-azz

prod = 1.

fact = 1.

sum = 1.

summ = 0.

k=0

k=k+1

prod = prod*(k+0.5-1)

fact = fact'k

arg = (x""k)"{cnn/(k+cnn))

argg = K*(x"*(k-1))*(cnn/(k+cnn))

term = prod*arg/fact

termm = prod*argg/fact

sum = sum+term

summ = summ-termm

if(abs(term).lt.1.E-10) go to 800

go to 670

ssum = (0.5/azz**0.5)"(beta-((x**cnn)/cnn)*sum)
ssumm = ({-0.5/azz)*ssum)+((0.5/azz**0.5)* (x**¢cn}*(sum-{x/cnn)*
* *summ))

g0 = (2.0°cnn*(azz/(x"*cnn))*ssum)-eps

g1 = (g0+eps)*({1.0/azz)+(cnn/x))+2.0"cnn*(azz/(x**cnn))*ssumm
g2 = g0/g1

retum

end

subroutine gamfun{gamma,w)
gamma function
dimension b(8)

data (b(i),i=1,8)/-.577191652, .988205891, -.897056937,
*.918206857,-.756704078, .48219934, -.193527818, .035868343/

iw = int(w)

fw = w-iw

if(iw.gt.0) go to 920
gamma = 1.0/fw

go to 970

gamma =1

do 960 j = 1,iw-1
gamma = gamma”*(w-j)
continue

gfw = 1
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do 1000 k= 1.8

gfw = gfw + (b(k)*(fw**k))
1000 continue

gamma = gamma’gfw

return

end
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LIST OF SYMBOLS

Ag Bore Area
a Parameter (Eq. B-28)
ay Pidduck-Kent Characteristic Parameter (Eq. B-33)
B Separation Constant (Eq. B-23) :
B.(a,b) Incomplete Beta Function
Cc Propellant Charge Mass
C(x,) Gas Mass Between Breech and x, (Eq. B-113)
Cy Specific Heat at Constant Volume
E;(t) Gas Internal Energy
Zq Initial Gas Internal Energy
oF(abic;z) Gauss Hypergeometric Function
f(xo) Function Describing Spatial Dependence of z (x,t) (Eq. 8-19)
fo = (¥o) Value of f(x,) at Projectile Base
K, K(x,) Adiabatic Constant
KE Kinetic Energy
M Projectile Mass
n Polytropic Index, (y - 1)~
P Gas Pressure
=26 Space Mean Gas Pressure
P(Xg 1) Pressure of Gas E'ement Initially Located at x,,
a{p) Integration Variable (Eq. B-41}
R Gas Constant
S(n.ay) Integral Arising in Pidduck-Kent Derivation; Specific Gauss Hypergeometric
Function (Eq. B-40 and B-41)
t Time
T Gas Temperature
T Space Mean Gas Temperature
T(x,.t) Temperature of Gas Element Initially Located at x,
u(x,.t) Velocity of Gas Element Initially Located at x
Ug Projectile Velocity
W(x,,t) Function of Density of (Gas Element Initially Located at x, (Eq. B-12)
X(x,,1) Position of Gas Element Initially Located at x,
Xq Initial Location of Gas Element
y(t) = x{y,.t) Projectile Position
Yo Initial Projectile Position
2(x,.1) Pidduck-Kent Variable, Reduced Gas Element Position (Eq. B-7)
Y Ratio of Specific Heats
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Pidduck-Kent Characteristic Parameter (Eq. B-83)
Ratio of Propellant Charge Mass to Projectile Mass
Gas Covolume

Integration Variable (Eq. B-66)

Gas Density

Density of Gas Element Initially Located at x,

Space Mean Gas Density
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